scholarly journals Adaptive proportional integral controller based on ann for dc link voltage control single-phase inverter connected to grid

2021 ◽  
Vol 2 (2) ◽  
pp. C20A22-1-C20A22-6
Author(s):  
Mamadou Traore ◽  
◽  
Alphousseyni Ndiaye ◽  
Amadou Ba ◽  
Senghane Mbodji ◽  
...  

The output power of the inverter of a PV system is directly affected by the DC-link voltage. Hence an adaptive Proportional Integral controller based on Artificial Neural Networks is developed in this paper. MATLAB/Simulink is used for the simulation of the studied system in order to evaluate the performance of the proposed methods. Simulation results show that the proposed API-ANN is faster to track the DC-link voltage than the conventional method. The injected harmonics to the grid were significantly reduced with API-ANN (0.08 % of total harmonic distortion) in comparison with the classic PI with 4.23 %. The API-ANN gives a good performance than the classic PI.

Author(s):  
K.C. Chen ◽  
S. Salimin ◽  
S. A. Zulkifli ◽  
R. Aziz

<span>This paper presents the harmonic reduction performance of proportional resonant (PR) current controller in single phase inverter system connected to nonlinear load. In the study, proportional resonant current controller and low pass filter is discussed to eliminate low order harmonics injection in single phase inverter system. The potential of nonlinear load in producing harmonics is showed and identified by developing a nonlinear load model using a full bridge rectifier circuit. The modelling and simulation is done in MATLAB Simulink while harmonic spectrum results are obtained using Fast Fourier Transfor. End result show PR current controller capability to overcome the injection of current harmonic problems thus improved the overall total harmonic distortion (THD).</span>


2019 ◽  
Vol 6 (4) ◽  
pp. 223-238 ◽  
Author(s):  
Ibtissem Tiss ◽  
Abdulrahman Alahdal ◽  
Kaiçar Ammous ◽  
Anis Ammous

2017 ◽  
Vol 117 ◽  
pp. 674-681 ◽  
Author(s):  
V. Birunda Mary ◽  
I. William Christopher ◽  
G. Themozhi

The single phase inverter provides continuous AC power supplies without any interrupt .The idea is to serve sinusoidal AC output whose voltage and frequency can be controlled by PWM pulse. The main theme of this concept is to present a new construction of an FPGA based control techniques for inverter. In this proposed system, a PI controller is used to the single phase PWM voltage source inverter. It minimizes periodic distraction resulted from linear load. Simulation provides the results, with reduced harmonics distortion of the output voltage .and innovative technique for including a fuzzy logic controller through a usual sampled pulse-width modulator is reported. The FLC is used to decrease the harmonic distortion and to offer better standard regulation. Simulations are carried out in ALTERA-Quartus II 8.0 software in addition by means of Matlab/Simulink and the results are presented for various control techniques. FPGA controller is preferred for the real time realization of the switching approach, for the most part owing to its larger computation speed which is able to guarantee the precision of the PWM pulse is developed. At the concluding stage the FPGA is used as a PWM generator in order to apply the appropriate signals for inverter switches


Author(s):  
Salam Jabr ◽  
Adel A. Obed

This paper proposes a low-cost single-phase micro-inverter for grid-connected photovoltaic (PV) system. The lifetime of the conventional flyback micro-inverter is shortened, because lifetime of a large electrolyte capacitor is shortened. For this reason, the need for a large electrolyte capacitor is avoided by proposing power decoupling (PD) circuit. Dual advantages are achieved by proposed circuit, first high-power decoupling with small capacitances and other to protect the main MOSFET from spike voltage stress during turn off time without needing for additional a snubber circuit. Consequently, PD circuit is already used as a snubber circuit to absorb the leakage energy in the transformer which may destroy the switch and thus the voltage spike on the main MOSFET decreased. In addition, operating principle, modes, and control scheme of the proposed micro-inverter are discussed. As the simulation results, the input power ripple of the single-phase power fluctuation is under than 4%, unity power factor (P.F) and the total harmonic distortion (THD) of the proposed inverter output current is less than 5%. PSIM tool box is provided to simulate the proposed system and the simulation results are adequate.


Author(s):  
Chau Minh Thuyen

<p>This paper aims to design a control method using an adaptive controller for Hybrid Active Power Filter. The controller of designed method includes a traditional discrete Proportional Integral controller and a neural regulator. The neural regulator is used to estimate the nonlinear model of Hybrid Active Power Filter and predict an output value in the future to adjust the parameters of the traditional discrete Proportional Integral controller according to the change of load. Compared to the control method using a conventional Proportional Integral controller, the proposed controller shows the advantages of smaller compensation error and smaller total harmonic distortion and able to online control very well. The simulations have verified the effectiveness of proposed controller.</p><p> </p>


2021 ◽  
Vol 10 (6) ◽  
pp. 2921-2928
Author(s):  
Adil Hasan Mahmood ◽  
Mustafa F. Mohammed ◽  
Mohammed Omar ◽  
Ali H. Ahmad

In power electronics, it is necessary to select the best converter circuit topology that has good performance among different converters. The single-ended primary inductor converter (SEPIC) has good performance and is advantageous among different direct current/direct current (DC/DC) converters. In this paper, a design of a SEPIC converter is made by selecting the values of its components according to the required output voltage and power. The design is made by an assumption that both of its inductors have the same value. The converter is tested by using MATLAB Simulink successfully. Later, its output voltage is regulated by using a proportional integral (PI-controller) through tuning its proportional and integral gains. Finally, the SEPIC converter is connected to a single-phase full-bridge inverter to supply its required DC voltage. The role of the SEPIC converter is to regulate the dc-link voltage between its output side and the inverter. The results showed the success of this connection to supply alternating current (AC) loads with low total harmonic distortion (THD).


Author(s):  
Hussain Attia ◽  
Hang Seng Che ◽  
Tan Kheng Suan Freddy ◽  
Ahmad Elkhateb

The single phase inverter performance through the unipolar and bipolar strategies has been previously analyzed based on the constant switching frequency pulse width modulation (CSFPWM). However, the confined band variable switching frequency PWM (CB-VSFPWM) is currently proposed as a new variable switching frequency PWM technique through unipolar strategy to facilitate the design of high order filter, to reduce the switching losses, and to reduce the current total harmonics distortion (THD) as well. To evaluate the performance of a single phase inverter based on the CBVSFPWM through bipolar strategy, this paper presents a comparative study of the CB-VSFPWM based inverter performance using the unipolar PWM and the bipolar PWM strategies. The study adopts MATLAB/Simulink to simulate the inverter and to analyze the simulation results in terms of harmonics spectrum, total harmonic distortion (THD), and fundamental components. The analysis of the study results gives an indication about the appropriate type of CB-VSFPWM strategy (unipolar PWM or bipolar PWM) to guarantee the desired performance of the connected inverter in terms of the electrical grid standards like THD, and harmonics spectrum of the inverter current.


Sign in / Sign up

Export Citation Format

Share Document