scholarly journals Single phase inverter fed through a regulated SEPIC converter

2021 ◽  
Vol 10 (6) ◽  
pp. 2921-2928
Author(s):  
Adil Hasan Mahmood ◽  
Mustafa F. Mohammed ◽  
Mohammed Omar ◽  
Ali H. Ahmad

In power electronics, it is necessary to select the best converter circuit topology that has good performance among different converters. The single-ended primary inductor converter (SEPIC) has good performance and is advantageous among different direct current/direct current (DC/DC) converters. In this paper, a design of a SEPIC converter is made by selecting the values of its components according to the required output voltage and power. The design is made by an assumption that both of its inductors have the same value. The converter is tested by using MATLAB Simulink successfully. Later, its output voltage is regulated by using a proportional integral (PI-controller) through tuning its proportional and integral gains. Finally, the SEPIC converter is connected to a single-phase full-bridge inverter to supply its required DC voltage. The role of the SEPIC converter is to regulate the dc-link voltage between its output side and the inverter. The results showed the success of this connection to supply alternating current (AC) loads with low total harmonic distortion (THD).

2017 ◽  
Vol 26 (12) ◽  
pp. 1750203 ◽  
Author(s):  
Ebrahim Babaei ◽  
Mohammad Shadnam Zarbil ◽  
Mehran Sabahi

In this paper, a new topology for cascaded multilevel inverters based on quasi Z-source converter is proposed. In the proposed topology, the magnitude of output voltage is not limited to dc voltage source, while the magnitude of output voltage of conventional cascaded multilevel inverters is limited to dc voltage source. In the proposed topology, the magnitude of output voltage can be increased by controlling the duty cycle of shoot-through (ST) state, transformer turn ratio, and the number of switched inductors in the Z-source network. As a result, there is no need for extra dc–dc converter. In the proposed topology, the total harmonic distortion (THD) is decreased in comparison with the conventional Z-source inverters. The proposed topology directly delivers power from a power source to load. In addition, in the proposed basic unit, higher voltage gain is achieved in higher modulation index which is an advantage for the proposed base unit. The performance of the proposed topology is verified by the experimental results of five-level single-phase inverter.


2015 ◽  
Vol 793 ◽  
pp. 315-319
Author(s):  
M. Zhafarina ◽  
M. Irwanto ◽  
A.H. Haziah ◽  
N. Gomesh ◽  
Y.M. Irwan ◽  
...  

Photovoltaic is use to supply electricity from sunlight. Inverter is used to convert the direct current (DC) from photovoltaic to alternating current (AC). This project is to design and develop a single phase inverter that able to invert the input voltage of DC to output voltage of AC using PROTEUS software. The inverter based on 8 bits for one cycle of a driver pulse wave. This simulation used before doing the hardware. This software can save a lot of time on this exact simulation of the prototype.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 154
Author(s):  
Wei Yao ◽  
Jiamin Cui ◽  
Wenxi Yao

This paper presents a novel digital control scheme for the regulation of single-phase voltage source pulse width modulation (PWM) inverters used in AC power sources. The proposed scheme adopts two deadbeat controllers to regulate the inner current loop and the outer voltage loop of the PWM inverter. For the overhead of digital processing, the change of duty of PWM lags one carrier period behind the sampling signal, which is modeled as a first-order lag unit in a discrete domain. Based on this precise modeling, the deadbeat controllers make the inverter get a fast dynamic response, so that the inverter’s output voltage is obtained with a very low total harmonic distortion (THD), even when the load is fluctuating. The parameter sensitivity of the deadbeat control was analyzed, which shows that the proposed deadbeat control system can operate stably when the LC filter’s parameters vary within the range allowed. The experimental results of a 2kW inverter prototype show that the THD of the output voltage is less than 3% under resistive and rectifier loads, which verifies the feasibility of the proposed scheme. An additional advantage of the proposed scheme is that the parameter design of the controller can be fully programmed without the experience of a designer.


Author(s):  
K.C. Chen ◽  
S. Salimin ◽  
S. A. Zulkifli ◽  
R. Aziz

<span>This paper presents the harmonic reduction performance of proportional resonant (PR) current controller in single phase inverter system connected to nonlinear load. In the study, proportional resonant current controller and low pass filter is discussed to eliminate low order harmonics injection in single phase inverter system. The potential of nonlinear load in producing harmonics is showed and identified by developing a nonlinear load model using a full bridge rectifier circuit. The modelling and simulation is done in MATLAB Simulink while harmonic spectrum results are obtained using Fast Fourier Transfor. End result show PR current controller capability to overcome the injection of current harmonic problems thus improved the overall total harmonic distortion (THD).</span>


2012 ◽  
Vol 433-440 ◽  
pp. 3728-3733
Author(s):  
Zhen Wang ◽  
Ling Shun Liu

According to the requirement of a missile’s power supply, a 150V/50Hz high-quality single-phase inverter has been developed, and the CPU is TMS320LF2407A, and the main circuit is full-bridge inverter intelligent power module (IPM), and SPWM control method has been used too. The stability and the accuracy of the output voltage of this power supply have been improved because of the use of the digital PID regulator. The results of experiments show that the power supply has the advantages of the simple-circuit, the high-quality output-waveform, the high-stability output-voltage and so on.


Sign in / Sign up

Export Citation Format

Share Document