scholarly journals Solution of Fractional Order Equations in the Domain of the Mellin Transform

Author(s):  
Sunday Emmanuel Fadugba

This paper presents the Mellin transform for the solution of the fractional order equations. The Mellin transform approach occurs in many areas of applied mathematics and technology. The Mellin transform of fractional calculus of different flavours; namely the Riemann-Liouville fractional derivative, Riemann-Liouville fractional integral, Caputo fractional derivative and the Miller-Ross sequential fractional derivative were obtained. Three illustrative examples were considered to discuss the applications of the Mellin transform and its fundamental properties. The results show that the Mellin transform is a good analytical method for the solution of fractional order equations.

2017 ◽  
Vol 22 (4) ◽  
pp. 503-513 ◽  
Author(s):  
Fei Wang ◽  
Yongqing Yang

This paper investigates fractional order Barbalat’s lemma and its applications for the stability of fractional order nonlinear systems with Caputo fractional derivative at first. Then, based on the relationship between Caputo fractional derivative and Riemann-Liouville fractional derivative, fractional order Barbalat’s lemma with Riemann-Liouville derivative is derived. Furthermore, according to these results, a set of new formulations of Lyapunov-like lemmas for fractional order nonlinear systems are established. Finally, an example is presented to verify the theoretical results in this paper.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050123
Author(s):  
YONG-SHUN LIANG

In the present paper, fractal dimension and properties of fractional calculus of certain continuous functions have been investigated. Upper Box dimension of the Riemann–Liouville fractional integral of continuous functions satisfying the Hölder condition of certain positive orders has been proved to be decreasing linearly. If sum of order of the Riemann–Liouville fractional integral and the Hölder condition equals to one, the Riemann–Liouville fractional integral of the function will be Lipschitz continuous. If the corresponding sum is strictly larger than one, the Riemann–Liouville fractional integral of the function is differentiable. Estimation of fractal dimension of the derivative function has also been discussed. Finally, the Riemann–Liouville fractional derivative of continuous functions satisfying the Hölder condition exists when order of the Riemann–Liouville fractional derivative is smaller than order of the Hölder condition. Upper Box dimension of the function has been proved to be increasing at most linearly.


2016 ◽  
Vol 14 (1) ◽  
pp. 1122-1124 ◽  
Author(s):  
Ricardo Almeida ◽  
Małgorzata Guzowska ◽  
Tatiana Odzijewicz

AbstractIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 130
Author(s):  
Suphawat Asawasamrit ◽  
Yasintorn Thadang ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In the present article we study existence and uniqueness results for a new class of boundary value problems consisting by non-instantaneous impulses and Caputo fractional derivative of a function with respect to another function, supplemented with Riemann–Stieltjes fractional integral boundary conditions. The existence of a unique solution is obtained via Banach’s contraction mapping principle, while an existence result is established by using Leray–Schauder nonlinear alternative. Examples illustrating the main results are also constructed.


2014 ◽  
Vol 23 (09) ◽  
pp. 1450044 ◽  
Author(s):  
Abdullah Engin Çalik ◽  
Hüseyin Şirin ◽  
Hüseyin Ertik ◽  
Buket Öder ◽  
Mürsel Şen

In this paper, the half-life values of spherical proton emitters such as Sb , Tm , Lu , Ta , Re , Ir , Au , Tl and Bi have been calculated within the framework of fractional calculus. Nuclear decay equation, related to this phenomenon, has been resolved by using Caputo fractional derivative. The order of fractional derivative μ being considered is 0 < μ ≤ 1, and characterizes the fractality of time. Half-life values have been calculated equivalent with empirical ones. The dependence of fractional derivative order μ on the nuclear structure has also been investigated.


2021 ◽  
Vol 24 (4) ◽  
pp. 1003-1014
Author(s):  
J. A. Tenreiro Machado

Abstract This paper proposes a conceptual experiment embedding the model of a bouncing ball and the Grünwald-Letnikov (GL) formulation for derivative of fractional order. The impacts of the ball with the surface are modeled by means of a restitution coefficient related to the coefficients of the GL fractional derivative. The results are straightforward to interpret under the light of the classical physics. The mechanical experiment leads to a physical perspective and allows a straightforward visualization. This strategy provides not only a motivational introduction to students of the fractional calculus, but also triggers possible discussion with regard to the use of fractional models in mechanics.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 485 ◽  
Author(s):  
Hari M. Srivastava ◽  
Arran Fernandez ◽  
Dumitru Baleanu

We consider the well-known Mittag–Leffler functions of one, two and three parameters, and establish some new connections between them using fractional calculus. In particular, we express the three-parameter Mittag–Leffler function as a fractional derivative of the two-parameter Mittag–Leffler function, which is in turn a fractional integral of the one-parameter Mittag–Leffler function. Hence, we derive an integral expression for the three-parameter one in terms of the one-parameter one. We discuss the importance and applications of all three Mittag–Leffler functions, with a view to potential applications of our results in making certain types of experimental data much easier to analyse.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Waqas Nazeer ◽  
Ghulam Farid ◽  
Zabidin Salleh ◽  
Ayesha Bibi

We have studied the Opial-type inequalities for superquadratic functions proved for arbitrary kernels. These are estimated by applying mean value theorems. Furthermore, by analyzing specific functions, the fractional integral and fractional derivative inequalities are obtained.


Sign in / Sign up

Export Citation Format

Share Document