scholarly journals The Construction of Regional Ecological Security Pattern Based on a Multi-Factor Comprehensive Model and Circuit Theory

Author(s):  
H.R. Yu ◽  
Y.Z. Wang ◽  
Z. Liang ◽  
C.K. Min

Various ecological problems have become increasingly prominent due to the accelerated growth of urbanization. Ecological security and ecological conservation have become an important topics in the current scenario. This study took southern Anhui as an example, constructing comprehensive assessment models to conduct source identification from three perspectives, i.e. ecosystem services, ecological sensitivity and residents’ ecological needs. Landscape resistance surface was built based on the reciprocal of habitat quality and night-time light data. According to the circuit theory, the ecological process in the heterogeneous landscape was simulated to identify ecological corridors, extract pinch points and divide barriers that need improvement, thereby to construct the southern Anhui ecological security pattern (ESP). The pattern comprised 20 ecological sources, 37 ecological corridors, 9 pinch points and 2 levels of improvement areas. Specifically, ecological sources were mainly distributed within the area of Huangshan city and Xuancheng city, mostly covered with trees; ecological corridors were mostly located in the northern part of the research area; pinch points were mainly farmland or beside construction land; the primary improvement area was mainly in Chaohu city and Maanshan city, while the secondary improvement area was distributed around the primary area. The study discussed the diversified improvement strategies of different barriers and introduced the optimization scheme “one centre, two wings, one belt”, providing planning advice for decision-makers. The study expanded the construction of regional ESP, and partly guided the steady development of ESP of southern Anhui.

2020 ◽  
Vol 23 (1) ◽  
pp. 563-590
Author(s):  
Xingxing Jin ◽  
Luyao Wei ◽  
Yi Wang ◽  
Yuqi Lu

AbstractThe construction of ecological security pattern is one of the important ways to alleviate the contradiction between economic development and ecological protection, as well as the important contents of ecological civilization construction. How to scientifically construct the ecological security pattern of small-scale counties, and achieve sustainable economic development based on ecological environment protection, it has become an important proposition in regulating the ecological process effectively. Taking Fengxian County of China as an example, this paper selected the importance of ecosystem service functions and ecological sensitivity to evaluate the ecological importance and identify ecological sources. Furthermore, we constructed the ecological resistance surface by various landscape assignments and nighttime lighting modifications. Through a minimum cumulative resistance model, we obtained ecological corridors and finally constructed the ecological security pattern comprehensively combining with ecological resistance surface construction. Accordingly, we further clarified the specific control measures for ecological security barriers and regional functional zoning. This case study shows that the ecological security pattern is composed of ecological sources and corridors, where the former plays an important security role, and the latter ensures the continuity of ecological functions. In terms of the spatial layout, the ecological security barriers built based on ecological security pattern and regional zoning functions are away from the urban core development area. As for the spatial distribution, ecological sources of Fengxian County are mainly located in the central and southwestern areas, which is highly coincident with the main rivers and underground drinking water source area. Moreover, key corridors and main corridors with length of approximately 115.71 km and 26.22 km, respectively, formed ecological corridors of Fengxian County. They are concentrated in the western and southwestern regions of the county which is far away from the built-up areas with strong human disturbance. The results will provide scientific evidence for important ecological land protection and ecological space control at a small scale in underdeveloped and plain counties. In addition, it will enrich the theoretical framework and methodological system of ecological security pattern construction. To some extent, it also makes a reference for improving the regional ecological environment carrying capacities and optimizing the ecological spatial structure in such kinds of underdeveloped small-scale counties.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 380
Author(s):  
Yu Han ◽  
Chaoyue Yu ◽  
Zhe Feng ◽  
Hanchu Du ◽  
Caisi Huang ◽  
...  

Urbanization is the development trend of all countries in the world, but it has caused considerable ecological problems that need to be alleviated by building ecological security patterns. This study took Ningbo as an example to construct and optimize an ecological security pattern. We analyzed land use types, normalized difference vegetation index, and landscape connectivity for ecological sources selection. In constructing the resistance surface, we considered natural and socio-economic factors. On this basis, we identified ecological corridors based on a minimum cumulative resistance model. Finally, the ecological security pattern was optimized through space syntax. Results showed that Ningbo has 18 ecological sources, with an area of 3051.27 km2 and 29 ecological corridors, with a length of 1172.18 km. Among them, 11 are first-level, 10 are second-level, and 8 are third-level corridors. After optimization, the area and protection cost of the ecological security pattern were significantly reduced, which can effectively alleviate the trade-off between ecological protection and economic development. This research can provide a reference for the construction and optimization of ecological security patterns and has reference significance for ecological protection in rapidly urbanized areas.


2021 ◽  
Vol 13 (15) ◽  
pp. 2865
Author(s):  
Qixin Lin ◽  
Ahmed Eladawy ◽  
Jinming Sha ◽  
Xiaomei Li ◽  
Jinliang Wang ◽  
...  

The unprecedented regional urbanization has brought great pressure on the ecological environment. Building an ecological security pattern and guide regional land and space development is an important technique to ensure regional ecological security and stability to achieve sustainable development. In this study, the Pingtan Island of China and the Durban city of South Africa were chosen as case study area for a comparative study of different scales. The importance of ecosystem services and ecological sensitivity were evaluated, respectively. The core area of landscape which is vital for ecological function maintenance was extracted by morphological spatial pattern analysis (MSPA) and landscape connectivity analysis. Furthermore, the ecological sources were determined by combining the results of ecological protection redline delimitation and core area landscape extraction. The potential ecological corridors were identified based on the minimum cumulative resistance model, and the ecological security pattern of study areas was constructed. The results showed that the ecological protection redline areas of Pingtan and Durban were 42.78 km2 and 389.07 km2, respectively, which were mainly distributed in mountainous areas with good habitat quality. Pingtan ecological security pattern is composed of 15 ecological sources, 16 ecological corridors, 10 stepping stone patches and 15 ecological obstacle points. The total length of corridors is 112.23 km, which is radially distributed in the form of “one ring, three belts”. The ecological security pattern of Durban is composed of 15 ecological sources, 17 ecological corridors, 11 stepping stone patches and 18 ecological obstacle points. The total length of corridors is 274.25 km, which is radially distributed in the form of “two rings and three belts”. The research results can provide an important reference for the land space construction planning and ecological restoration projects in Pingtan and Durban.


Author(s):  
Rong Guo ◽  
Tong Wu ◽  
Mengran Liu ◽  
Mengshi Huang ◽  
Luigi Stendardo ◽  
...  

Urban agglomerations have become a new geographical unit in China, breaking the administrative fortresses between cities, which means that the population and economic activities between cities will become more intensive in the future. Constructing and optimizing the ecological security pattern of urban agglomerations is important for promoting harmonious social-economic development and ecological protection. Using the Harbin-Changchun urban agglomeration as a case study, we have identified ecological sources based on the evaluation of ecosystem functions. Based on the resistance surface modified by nighttime light (NTL) data, the potential ecological corridors were identified using the least-cost path method, and key ecological corridors were extracted using the gravity model. By combining 15 ecological sources, 119 corridors, 3 buffer zones, and 77 ecological nodes, the ecological security pattern (ESP) was constructed. The main land-use types composed of ecological sources and corridors are forest land, cultivated land, grassland, and water areas. Some ecological sources are occupied by construction, while unused land has the potential for ecological development. The ecological corridors in the central region are distributed circularly and extend to southeast side in the form of tree branches with the Songhua River as the central axis. Finally, this study proposes an optimizing pattern with "four belts, four zones, one axis, nine corridors, ten clusters and multi-centers" to provide decision makers with spatial strategies with respect to the conflicts between urban development and ecological protection during rapid urbanization.


2019 ◽  
Vol 11 (22) ◽  
pp. 6416 ◽  
Author(s):  
Ouyang ◽  
Wang ◽  
Zhu

Coordinating ecosystem service supply and demand equilibrium and utilizing machine learning to dynamically construct an ecological security pattern (ESP) can help better understand the impact of urban development on ecological processes, which can be used as a theoretical reference in coupling economic growth and environmental protection. Here, the ESP of the Changsha–Zhuzhou–Xiangtan urban agglomeration was constructed, which made use of the Bayesian network model to dynamically identify the ecological sources. The ecological corridor and ecological strategy points were identified using the minimum cumulative resistance model and circuit theory. The ESP was constructed by combining seven ecological sources, “two horizontal and three vertical” ecological corridors, and 37 ecological strategy points. Our results found spatial decoupling between the supply and demand of ecosystem services (ES) and the degradation in areas with high demand for ES. The ecological sources and ecological corridors of the urban agglomeration were mainly situated in forestlands and water areas. The terrestrial ecological corridor was distributed along the outer periphery of the urban agglomeration, while the aquatic ecological corridor ran from north to south throughout the entire region. The ecological strategic points were mainly concentrated along the boundaries of the built-up area and the intersection between construction land and ecological land. Finally, the ecological sources were found primarily on existing ecological protection zones, which supports the usefulness of machine learning in predicting ecological sources and may provide new insights in developing urban ESP.


2019 ◽  
Vol 11 (22) ◽  
pp. 6343 ◽  
Author(s):  
Jiulin Li ◽  
Jiangang Xu ◽  
Jinlong Chu

The construction of an ecological security pattern (ESP) is one of the basic methods to protect regional ecological security and enhance people’s well-being. In the case of Anhui province, located in the Yangtze River Delta region of China, regional ecological sources were assessed and recognized in terms of ecosystem services, and regional ESP was then constructed based on circuit theory. Current density was applied to analyze the significance of patches and corridors and recognize sticking points, and thereby strategies were introduced to optimize regional ESP. Results of ecosystem services function assessment showed that there were 47 ecological patches, 107 ecological corridors, 16 pinch points, and six sticking points in the ESP of Anhui province. The watershed of the Yangtze and Huai rivers divides the ESP of the northern and southern Anhui, which has huge landscape spatial heterogeneity. Areas with relatively good ecological resources were basically located between Dabie Mountain area in the west and the low hilly area in the south of Anhui, with mostly woodland and farmland as ecological sources. However, cities in the northern Anhui, also in the north of the watershed of the Yangtze and Huai rivers, face severe situations in terms of environmental protection. This study conducted spatial analyses on ESP with different thresholds and proposed to classify different ESPs according to ecological control. This helps to alleviate the contradiction between economic development and environmental protection, and improve the supply capacity of regional ecosystem services, in order to satisfy the regional demand for ecosystem services. Meanwhile, this study offers more methods to construct regional ESP and introduces targeted measures to improve connectivity, which is of practical guidance for the connectivity and optimization of ecological patterns.


2019 ◽  
Vol 39 (23) ◽  
Author(s):  
王晓玉 WANG Xiaoyu ◽  
冯喆 FENG Zhe ◽  
吴克宁 WU Kening ◽  
林倩 LIN Qian

Author(s):  
Xueping Su ◽  
Yong Zhou ◽  
Qing Li

Researchers and managers of natural resource conservation have increasingly emphasized the importance of maintaining a connected network of important ecological patches to mitigate landscape fragmentation, reduce the decline of biodiversity, and sustain ecological services. This research aimed to guide landscape management and decision-making by developing an evaluation framework to construct ecological security patterns. Taking the Jianghan Plain as the study area, we identified key ecological sources by overlaying the spatial patterns of ecological quality (biodiversity, carbon storage, and water yield) and ecological sensitivity (habitat sensitivity, soil erosion sensitivity, and water sensitivity) using the Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model and the Chinese Soil Loss Equation Function. Ecological corridors were obtained by the least-cost path analysis method and circuit theory. A total of 48 ecological sources (3812.95 km2), primarily consisting of water area, forestland, and cropland, were identified. Ninety-one ecological corridors were derived, with a total length of 2036.28 km. Forty barriers and 40 pinch points with the highest improvement coefficient scores or priority scores were selected. There were 11 priority corridors with very high levels of connectivity improvement potential and conservation priority, occupying 16.15% of the total length of corridors. The overall potential for ecological connectivity is high on the Jianghan Plain. Our framework offers a valuable reference for constructing ecological security patterns and identifying sites for ecological restoration at the regional scale.


2021 ◽  
Vol 299 ◽  
pp. 02016
Author(s):  
Ke Li ◽  
Tiantian Yu ◽  
Ji Li ◽  
Chengling Cui ◽  
Song Wu

The contradiction between urban development and ecological environment protection is particularly obvious in rapidly expanding urban areas. It is necessary to build a reasonable urban ecological security pattern. to balance urban expansion and ecological security. This paper takes Zhengzhou as an example, based on spatial principal component analysis, a comprehensive assessment of urban ecological security is carried out by using natural characteristics, human characteristics, and natural and human interaction characteristics, and ecological sources are extracted; Based on the ecological corridors extracted by the minimal cumulative resistance (MCR) model, the edge-betweenness index is used to optimize the model, and redundant corridors are eliminated, the first-level ecological corridors and ecological nodes on the first-level ecological corridor are extracted. Through experiments, 25 important ecological sources, 24 first-level ecological corridors, and 32 ecological nodes were extracted. Important ecological sources, first-level ecological corridors and ecological nodes constitute the basic ecological security pattern of Zhengzhou, which effectively alleviate the contradiction between rapid urban expansion and ecological protection, and ensuring urban ecological security at the same time.


Sign in / Sign up

Export Citation Format

Share Document