scholarly journals Morphological variability of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) cones in the context of seed extraction

2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Arkadiusz Gendek ◽  
Monika Aniszewska ◽  
Ewa Tulska ◽  
Joanna Siwek

In the paper generating curves given by fourth-degree polynomials were used to model the shape of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) cones from the Polish Forest Districts of Kołaczyce (one batch) and Opole (two batches), and to calculate the surface area and volume of individual cones. However, it was not possible to construct generalized equations for the surface area and volume of Douglas fir cones due to the high variability of empirical coefficients. The surface area and volume of the cones were also calculated from their length and diameter based on formulas for a cylinder and a barrel corrected by constants k1 and k2. The mean surface area of closed Douglas fir cones determined for the first, second, and third batch using the generating function was 4,348.4 mm2, 3,857.0 mm2, and 2,844.7 mm2, and the volume was 27,212.4 mm3, 21,012.9 mm3, and 12,844.4 mm3, respectively. The corresponding values calculated from the geometric formulas for solids were 4,332.0 mm2, 3,838.0 mm2, and 2,862.9 mm2 for the surface area and 27,366.0 mm3, 20,648.9 mm3, and 13,375.3 mm3 for the volume. The evaporation area of open cones was found to be five times greater than that of closed cones, with the difference being statistically significant. The outer and inner surfaces of scales taken from the middle segment of Douglas fir cones were photographed using a Quanta 200 scanning microscope (FEIC). The characteristic elements of scale morphology were evaluated by means of MultiScan Base software package. The outer and inner surfaces of Douglas fir scales were found to differ in some important ways, similarly as it has been reported in the literature for the Scots pine, silver fir, European larch, and black alder. The outer surface of scales is formed by thick-walled cells with marked protrusions, while the inner surface reveals cells with thin, frayed walls in the region adjacent to the seeds and wings. Knowledge of the geometry of Douglas fir cones and the morphology of their scales may be helpful in optimizing seed extraction parameters for those cones. Key words: seed extraction, model, shape curve, surface area, volume, scanning electron microscope

2019 ◽  
Vol 138 (6) ◽  
pp. 981-989
Author(s):  
Monika Aniszewska ◽  
Ewa Tulska ◽  
Katarzyna Żurawska

Abstract In this paper, the results of research on the variability of black alder cones (Alnus glutinosa L.) ware presented. The research was carried out for two, significantly different, batches of cones. Basic size parameters and mass were measured. The shape of the cone was determined, and it was described with the fourth-degree polynomial. The surface area and volume of the cone were calculated using the forming curve and formulas for solids: barrel and cylinder. The parameters of cones—shape surface area and volume—were analyzed. It was found that for alder cones (from the researched origins), the average volumes calculated from the barrel formula are 1701 mm3 and 1162 mm3, and the areas calculated from the cylinder formula are 807 mm2 and 597 mm2. The structure of the inner and outer sides of scales was examined using a scanning electron microscope. Using the MultiScanBase v. 18.03 program, the elements of husk structure that could affect the efficiency of seeds extraction were measured. The results of the research can be used to program the process of seeds extraction from alder cones in commercial installations.


2018 ◽  
Vol 79 (2) ◽  
pp. 147-157
Author(s):  
Monika Aniszewska ◽  
Jacek Brzózko ◽  
Witold Zychowicz

Abstract Fir cones Abies alba Mill. are not as extensively described in the literature as cones of other species, and therefore, there is no description of the changes in water content and their dynamics during the extraction process. Developing a mathematical model describing these changes based on cone parameters and air temperature is a step forward in determining the optimal conditions for the extraction process. here, we present such a model derived using fresh cones collected in a seed production stand in the Zwoleń Forest District (RDSF Radom). For 120 randomly chosen cones, the length and the largest diameter of the cone were measured, using the Multiscan program. in addition, for 60 randomly selected cones, the diameter was measured along the entire length of the cone at 10 mm intervals. this allowed us to generate cone models approximating rotational solids for which the outer surface area was calculated using a fourth degree polynomial function and the obtained area was then used to determine cone volume. to facilitate the generalization of surface area and volume calculations to other cones, the ks1 and ks2 coefficients were derived, which simplified the employed formulas without significantly affecting accuracy. Analogous analyses were also performed for cone stems, which allowed the process of seed extraction from cones to be described by mathematical equations. The stem of the cone was found to constitute 2.6% of its volume and 4% of its dry mass. An exponential equation was used to describe the change in cone mass during the seed extraction process, in which the parameters are the initial and final water content of the cone and power factor b, which is a function of cone thickness. The energy content and germination rate for the extracted seeds were determined 14 and 28 days after sowing. The seeds obtained in the investigated extraction process did not reach first grade quality.


2016 ◽  
Vol 77 (3) ◽  
pp. 221-229 ◽  
Author(s):  
Monika Aniszewska ◽  
Urszula Błuszkowska

Abstract This study aimed at determining the shape of closed silver fir cones from the Jawor Forest District (Wroclaw), based purely on measurements of their length and thickness. Using these two parameters, the most accurate estimations were achieved with a fourth-degree polynomial fitting function. We then calculated the cones’ surface area and volume in three different ways: 1) Using the fourth-degree polynomial shape estimation, 2) Introducing indicators of compliance (k1, k2, k3) to calculate the volume and then comparing it to its actual value as measured in a pitcher filled with water, 3) Comparing the surface area of the cones as calculated with the polynomial function to the value obtained from ratios of indicators of compliance (ratios k4 and k5). We found that the calculated surface area and volume were substantially higher than the corresponding measured values. Test values of cone volume and surface area as calculated by our model were 8% and 5% lower, respectively, compared to direct measurements. We also determined the fir cones apparent density to be 0.8 g·cm-3on average. The gathered data on cone surface area, volume and bulk density is a valuable tool for optimizing the thermal peeling process in mill cabinets to acquire high quality seeds.


2017 ◽  
Vol 78 (3) ◽  
pp. 198-209 ◽  
Author(s):  
Monika Aniszewska ◽  
Sylwia Stadnik ◽  
Arkadiusz Gendek

Abstract The article describes the shape of the cones of the european larch (Larix decidua Mill.) using the fourth degree polynomial fitting function. The material is from the seed orchard of the Barycz Forest District. The curves were used to calculate the area and volume of single cones. it was not possible to generalize the formulas to calculate the surface and volume of larch cones using the described method, due to the large variability of the empirical coefficients of the equations. Finally, to calculate the area and volume of the cones, the formula to determine the solid figure of a cone was used. A constant αs of 0.43 was introduced to the formula. Calculated volume values were compared to actual volumes measured with a water-filled burette. The mean surface area of the larch cones was calculated from the forming function and was 780 mm2, and the volume was 2434 mm3. the values calculated from the cone formulas after taking into account the αs and constants (0.68 and 0.53) were 783 mm2 and 2415 mm3, respectively. the outer and inner surfaces of the seed scales located in the central part of the larch cones were photographed using a Quanta 200 scanning microscope. Specific features of the scales were measured using the Multi Scan Base program. We found that the outer and inner surfaces of the larch scales, as with pine and fir, differed. On the outer side, scales are formed by thick-walled cells with visible, protruding trichomes. thin-walled cells with jagged cell walls are visible on the inside at the location of the wings and seeds. long stem cells, resembling threads, were observed on the surface of the scales, which are absent on pine and fir seed scales.


2017 ◽  
Vol 78 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Monika Aniszewska ◽  
Arkadiusz Gendek ◽  
Joanna Śliwińska

Abstract This study was conducted on a batch of closed silver fir cones from Jawor Forest District and a mixture of scales from the seed extraction facility Grotniki. The scales were divided into three size classes corresponding to the bottom, middle and upper part of the cones and their area was measured with the Multi Scan Base v.18.03 software. Based on the sum of the inner and outer surface area of all scales, we then determined the total area of evaporation from the cones. In addition, the area of protruding scales was measured for differently sized scales from different parts of the cones. Previous studies have shown that the average outer surface of a closed cone, calculated as the sum of protruding scales, accounts for 10% of the outer surface of an open cone. Pictures of both scale surfaces with the internal seed bed and the external protrusions were taken using a scanning electron microscope. We noticed significant differences in dimension and shape of the channels and trichomes on the scale surface. On the inner side of the scales, we found a high diversity of trichomes of different lengths, whilst the outer side contained channels. Presumably, these characteristics affect the rate of water loss from the cones during desiccation and separation of the seed. In-depth knowledge on the evaporative surfaces of fir cones and scale structure will be helpful for optimizing the industrial processes of seed extraction.


1989 ◽  
Vol 19 (8) ◽  
pp. 943-947 ◽  
Author(s):  
H. Zhong ◽  
T. D. Schowalter

We studied wood excavation by scolytid and cerambycid beetles in decomposing boles of four conifer species during the first two years on the ground in western Oregon. Colonization density and gallery volumes were measured in experimental boles (0.5 m diameter × 5 m length) of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), western hemlock (Tsugaheterophylla (Raf.) Sarg.), Pacific silver fir (Abiesamabilis (Dougl.) Forbes), and western red cedar (Thujaplicata Donn). Ambrosia beetles (Coleoptera: Scolytidae) colonized boles only during the 1st year and were essentially restricted to Douglas-fir and western hemlock (removing 0.2% of the sapwood volume). Bark beetles (Coleoptera: Scolytidae) colonized boles only in the 1st year, primarily in Douglas-fir and Pacific silver fir (removing 7–8% of the phloem surface area). Wood borers (Coleoptera: Cerambycidae) excavated an additional 2.3% of the phloem surface area of Pacific silver fir in the 1st year and continued to excavate all species except Douglas-fir during the 2nd year. Consequences for the decomposition process are discussed.


2007 ◽  
Vol 3 (1) ◽  
pp. 89-113
Author(s):  
Zoltán Gillay ◽  
László Fenyvesi

There was a method developed that generates the three-dimensional model of not axisymmetric produce, based on an arbitrary number of photos. The model can serve as a basis for calculating the surface area and the volume of produce. The efficiency of the reconstruction was tested on bell peppers and artificial shapes. In case of bell peppers 3-dimensional reconstruction was created from 4 images rotated in 45° angle intervals. The surface area and the volume were estimated on the basis of the reconstructed area. Furthermore, a new and simple reference method was devised to give precise results for the surface area of bell pepper. The results show that this 3D reconstruction-based surface area and volume calculation method is suitable to determine the surface area and volume of definite bell peppers with an acceptable error.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 744-748 ◽  
Author(s):  
Jerry E. Weiland ◽  
Bryan R. Beck ◽  
Anne Davis

Pythium species are common soilborne oomycetes that occur in forest nursery soils throughout the United States. Numerous species have been described from nursery soils. However, with the exception of P. aphanidermatum, P. irregulare, P. sylvaticum, and P. ultimum, little is known about the potential for other Pythium species found in nursery soils to cause damping-off of tree seedlings. A greenhouse study was conducted to evaluate the pathogenicity and virulence of 44 Pythium isolates representing 16 species that were originally recovered from soil at three forest nurseries in Washington and Oregon. Seeds of Douglas-fir (Pseudotsuga menziesii) were planted into soil infested with each of the isolates. Seedling survival, the number of surviving seedlings with necrotic root lesions, and taproot length were evaluated 4 weeks later. Responses of Douglas-fir to inoculation varied significantly depending on Pythium species and isolate. Eight species (P. dissotocum, P. irregulare, P. aff. macrosporum, P. mamillatum, P. aff. oopapillum, P. rostratifingens, P. sylvaticum, and P. ultimum var. ultimum) significantly reduced the number of surviving seedlings compared to the noninoculated treatment. However, all Pythium species caused a greater percentage of seedlings to develop root lesions (total mean 40%) than was observed from noninoculated seedlings (17%). Taproot length varied little among Pythium treatments and was not a useful character for evaluating pathogenicity. Results confirm the ability of P. irregulare, P. mamillatum, and P. ultimum var. ultimum to cause damping-off of Douglas-fir seedlings, and are indicative that other species such as P. dissotocum, P. aff. macrosporum, P. aff. oopapillum, P. rostratifingens, and P. sylvaticum may also be responsible for seedling loss.


1998 ◽  
Vol 28 (8) ◽  
pp. 1198-1206 ◽  
Author(s):  
Paige E Axelrood ◽  
William K Chapman ◽  
Keith A Seifert ◽  
David B Trotter ◽  
Gwen Shrimpton

Poor performance of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantations established in 1987 has occurred in southwestern British Columbia. Affected sites were planted with 1-year-old container stock that exhibited some root dieback in the nursery. A study was initiated in 1991 to assess Cylindrocarpon and Fusarium root infection in planted and naturally regenerating (natural) Douglas-fir seedlings from seven affected plantations. Percentages of seedlings harboring Cylindrocarpon spp.and percent root colonization were significantly greater for planted seedlings compared with natural seedlings. A significant linear trend in Cylindrocarpon root colonization was observed for planted seedlings with colonization levels being highest for roots closest to the remnants of the root plug and decreasing at distances greater than 10cm from that region. This trend in Cylindrocarpon colonization was not observed for natural seedlings. Cylindrocarpon destructans (Zins.) Scholten var. destructans and C.cylindroides Wollenw. var. cylindroides were the only species isolated from planted and natural conifer seedlings. For most sites, percentage of seedlings harboring Fusarium spp.and percent Fusarium root colonization were less than for Cylindrocarpon. Recovery of Fusarium spp.from seedlings and root colonization levels were not significantly different for planted and natural seedlings from all sites.


Sign in / Sign up

Export Citation Format

Share Document