scholarly journals An Active Power Factor Corrected Power Supply fed Induction Motor Drive by Controlling the Leakage Inductance for Transformer with Soft Switching Strategy

Author(s):  
Jagata Kotasatyavathi and Guduru Ravi Kumar

Nowadays the use of electronic equipment finds a progressive development in the modern world. Hence it becomes a mandate to check whether the harmonic content of line current of any electronic device which is connected to the ac supply meets the appropriate standards. This demand is satisfied by implementing the Power Factor Correction (PFC) circuit in order to make the input current to be in sinusoidal in nature and in-phase with the input voltage. Numerous solutions are available to make the line current almost sinusoidal. This paper describes an isolated power factor corrected power supply that utilizes the leakage inductance of the isolation transformer to provide boost inductor functionality. The bulk capacitor is in the isolated part of the power supply allowing for controlled startup without dedicated surge limiting components. A control method based on switch timing and input/output voltage measurements is developed to jointly achieve voltage regulation and input power factor control.

Author(s):  
V Divyasri Sudharani and K Sabarinath

Nowadays the use of electronic equipment finds a progressive development in the modern world. Hence it becomes a mandate to check whether the harmonic content of line current of any electronic device which is connected to the ac supply meets the appropriate standards. This demand is satisfied by implementing the Power Factor Correction (PFC) circuit in order to make the input current to be in sinusoidal in nature and in-phase with the input voltage. Numerous solutions are available to make the line current almost sinusoidal. This paper describes an isolated power factor corrected power supply that utilizes the leakage inductance of the isolation transformer to provide boost inductor functionality. The bulk capacitor is in the isolated part of the power supply allowing for controlled startup without dedicated surge limiting components. A control method based on switch timing and input/output voltage measurements is developed to jointly achieve voltage regulation and input power factor control.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 166
Author(s):  
K Sasikala ◽  
R Krishna Kumar

Nowadays the use of electronic equipment finds a progressive development in the modern world. Hence it becomes a mandate to check whether the harmonic content of line current of any electronic device which is connected to the ac supply meets the appropriate standards. This demand is satisfied by implementing the Power Factor Correction (PFC) circuit in order to make the input current to be in sinusoidal in nature and in-phase with the input voltage. Numerous solutions are available to make the line current almost sinusoidal. This paper deals with the inclusion of passive PFC in the interleaved Fly back SMPS to improve the power factor. The proposed work also examines the reduction of current ripple at the output using interleaved converter.  


2012 ◽  
Vol 424-425 ◽  
pp. 941-944
Author(s):  
Xue Mei Hu ◽  
Guo Tong Zhang

Correction Technology on active power factor is now widely used in AC-DC power supply circuit to eliminate harmonic of power system, to improve the power factor. Firstly the method of power factor correction technology is set out. Secondly, the basic principle of active power factor correction technology is analyzed, then the control method for active power factor correction technology is given. Finally the development trend of active power factor correction technology is analyzed.


1994 ◽  
Vol 31 (3) ◽  
pp. 213-229 ◽  
Author(s):  
W. G. Hurley

The fundamentals of power factor correction The fundamental issues of power factor analysis for non-sinusoidal waveforms are described. A full-wave rectifier circuit is analysed and original approximations are derived for voltage ripple, peak diode current and input power factor. A power factor correction technique, based on a switching mode power supply, is presented.


2004 ◽  
Vol 13 (03) ◽  
pp. 557-576
Author(s):  
CHUNG-WOOK ROH ◽  
GUN-WOO MOON ◽  
MYUNG-JOONG YOUN

This paper presents a new single-stage single-switched forward converter with magnetic coupled nondissipative snubber, which gives good power factor correction (PFC), low current harmonic distortion, and tight output voltage regulation. The proposed converter features low switch current and voltage stresses, essential for the design of a single-stage power factor correction converter. The prototype shows that the IEC1000-3-2 requirements are met satisfactorily with nearly unity power factor. This proposed converter with magnetic coupled nondissipative snubber is particularly suited for power supply applications with low power level.


Sign in / Sign up

Export Citation Format

Share Document