scholarly journals ASSESSMENT OF ENVIRONMENTAL IMPLICATIONS OF ELECTRIC VEHICLES: A REVIEW

2021 ◽  
Vol 6 (4) ◽  
pp. 188-195
Author(s):  
Prantik Dutta
2019 ◽  
Vol 11 (23) ◽  
pp. 6657 ◽  
Author(s):  
Solhee Kim ◽  
Rylie E. O. Pelton ◽  
Timothy M. Smith ◽  
Jimin Lee ◽  
Jeongbae Jeon ◽  
...  

The environmental impact of battery electric vehicles (BEVs) largely depends on the environmental profile of the national electric power grid that enables their operation. The purpose of this study is to analyze the environmental performance of BEV usage in Korea considering the changes and trajectory of the national power roadmap. We examined the environmental performance using a weighted environmental index, considering eight impact categories. The results showed that the weighted environmental impact of Korea’s national power grid supply would increase overall by 66% from 2015 to 2029 using the plan laid out by the 7th Power Roadmap, and by only 33% from 2017 to 2031 using the 8th Power Roadmap plan. This change reflects the substantial amount of renewables in the more recent power mix plan. In 2016, BEV usage in Korea resulted in emissions reductions of about 37% compared with diesel passenger vehicles, and 41% compared with gasoline vehicles per kilometer driven (100 g CO2e/km versus 158 g and 170 g CO2e/km, respectively) related to transportation sector. By 2030, BEV usage in Korea is expected to achieve a greater emissions reduction of about 53% compared with diesel vehicles and 56% compared with gasoline vehicles. However, trade-offs are also expected because of increased particulate matter (PM) pollution, which we anticipate to increase by 84% compared with 2016 conditions. Despite these projected increases in PM emissions, increased BEV usage in Korea is expected to result in important global and local benefits through reductions of climate-changing greenhouse gas (GHG) emissions.


Energies ◽  
2013 ◽  
Vol 6 (5) ◽  
pp. 2663-2685 ◽  
Author(s):  
Jianlei Lang ◽  
Shuiyuan Cheng ◽  
Ying Zhou ◽  
Beibei Zhao ◽  
Haiyan Wang ◽  
...  

Machines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 51 ◽  
Author(s):  
Francesco Del Pero ◽  
Lorenzo Berzi ◽  
Andrea Antonacci ◽  
Massimo Delogu

A thorough assessment of Life-Cycle effects involved by vehicle lightweighting needs a rigorous evaluation of mass-induced consumption, on which energy and sustainability benefits during use stage directly depend. The paper proposes an analytical calculation procedure to estimate the weight-related energy consumption of pure Electric Vehicles (EVs), since existing literature leaves considerable room for improvement regarding this research area. The correlation between consumption and mass is expressed through the Energy Reduction Value (ERV) coefficient, which quantifies the specific consumption saving achievable through 100 kg mass reduction. The ERV is estimated for a number of heterogeneous case studies derived from real 2019 European market EV models and according to three drive cycles, to consider different driving behaviors. For the case studies under consideration, ERV ranges from 0.47 to 1.17 kWh/(100 km × 100 kg), with the variability mainly depending on vehicle size and driving cycle. Given the high uncertainty of mass-related consumption on car size, an analytical method is refined to estimate accurately the ERV for any real-world EV model, starting from vehicle technical features. Along with energy assessment, the research also evaluates the environmental implications of lightweight design by means of the Impact Reduction Value (IRV), which is estimated for three distinct electricity grid mixes. Finally, the ERV/IRV modeling approach is applied to a series of comparative lightweight case studies taken from the literature. Such an application demonstrates the effective utility of the work to reduce the uncertainty for all cases where no physical tests or computer-aided simulations are available.


2020 ◽  
Vol 12 (14) ◽  
pp. 5515 ◽  
Author(s):  
Fady M. A Hassouna ◽  
Khaled Al-Sahili

During the last two decades, problems related to high-energy consumption and greenhouse gas (GHG) emissions by the transportation sector have arisen. Therefore, several alternatives have been investigated, in order to reduce the dependence on the conventional fuels that are used by land transportation modes. One of these promising alternatives is the electric vehicles (EVs), which seem to be the future replacement for conventional vehicles. Thus, this study aims to quantify the energy and the environmental implications of EVs in Palestine in 2030, considering that the current percentage of EVs is almost 0%. In this study, the needed parameters related to the number of vehicles and energy costs by source in Palestine were collected. Then, several prediction models have been developed in order to determine the energy and environmental implications of EVs in 2030, considering that 10% of conventional vehicles could be replaced by EV during the next 10 years (2020–2030). The results have showed that this could save USD 464.31 million in operating energy costs during 2030 (one year of saving). More specifically, this number is almost equal to 3.18% of the gross domestic product (GDP) of Palestine in 2018. Furthermore, significant amounts of GHG emissions could be reduced. The reduction (during 2030) in NH4, N2O, and CO2 emissions could be around 10.51%, 10%, and 6.86%, respectively.


2018 ◽  
Vol 88 (6) ◽  
pp. 54-78
Author(s):  
Robert L. Reid
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document