scholarly journals Thermal Properties of New Developed Nigerian Illa and Ekpoma Rice Flour Varieties as Effected with Moisture Content

2021 ◽  
Vol 2 (2) ◽  
pp. 460-471
Author(s):  
Ide PATRICK EJIKE ◽  
Ikoko OMENAOGOR

Thermal parameters of food flour moisture content and temperature give an insight in the development and prediction of models that meet the needs of process design models, it also determine the thermal load of a particular product during handling. The bulk density (ρ), thermal conductivity (k), specific-heat capacity (Cp) and diffusivity (α) of Illa and Ekpoma rice flour were studied at varied (MC) moisture content (%) level. The results showed significance in thermal properties values at the different MC levels. The MC increased from 10.56 to 18.50%, increased the specific heat capacity (Cp) from 5.72 to 48.61kJ kg-1 °C-1 and 6.84 to 29.41 kJ kg-1 °C-1 for Illa and Ekpoma rice variety respectively and thermal conductivity(k) from 0.03 to 1.56 W/m0C and 0.03 to 0.38 W m-1 °C-1 for Illa and Ekpoma rice flour samples. Thermal diffusivity(α) and bulk density (ρ) of the processed Illa and Ekpoma rice flour samples decreased across the MC range of 10.56 to 18.50% (d.b). Thermal diffusivity(α) decreased from 4.38 to 1.25 x 10-4 m2 s-1 and 3.42 to 1.30 x 10-4 m2 s-1 for Illa and Ekpoma rice flour respectively while the values of bulk density (ρ) decreased from 697.72 to 676.34 kg m-3 and 687.49 to 664.26 kg m-3 for Illa and Ekpoma rice flour respectively.The developed model equations can be applied in estimation of thermal parameters of rice flour. Finally, Ekpoma and Illa rice flour sample displayed good thermal characteristics and it can be used as an alternative to imported wheat flour.

2017 ◽  
Vol 63 (No. 2) ◽  
pp. 79-85 ◽  
Author(s):  
Tunji Oloyede Christopher ◽  
Bukola Akande Fatai ◽  
Olaniyi Oriola Kazeem ◽  
Oluwatoyin Oniya Oluwole

The thermal properties of soursop seeds and kernels were determined as a function of moisture content, ranged from 8.0 to 32.5% (d.b.). Three primary thermal properties: specific heat capacity, thermal conductivity and thermal diffusivity were determined using Dual-Needle SH-1 sensors in KD2-PRO thermal analyser. The obtained results shown that specific heat capacity of seeds and kernels increased linearly from 768 to 2,131 J/kg/K and from 1,137 to 1,438 J/kg/K, respectively. Seed thermal conductivity increased linearly from 0.075 to 0.550 W/m/K while it increased polynomially from 0.153 to 0.245 W/m/K for kernel. Thermal diffusivity of both seeds and kernels increased linearly from 0.119 to 0.262 m<sup>2</sup>/s and 0.120 to 0.256 m<sup>2</sup>/s, respectively. Analysis of variance results showed that the moisture content has a significant effect on thermal properties (p ≤ 0.05). These values indicated the ability of the material to retain heat which enhances oil recovery and can be used in the design of machine and selection of suitable methods for their handling and processing.


2021 ◽  
Author(s):  
Jelili Hussein ◽  
Moruf Olanrewaju Oke ◽  
Kazeem Olaniyi Oriola ◽  
Abimbola Ajetunmobi

The thermal properties (specific heat capacity, thermal conductivity, and thermal diffusivity) of jack bean seed (Canavalia ensiformis) were determined for usage in designing the equipment necessary for thermal processes. These thermal properties were determined at 5, 10, 15, 20, and 25 % moisture contents (wb) and temperatures at 30, 40, and 50oC using the KD2 Pro thermal analyzer. Results showed that the specific heat capacity ranged from 1.55 to 2.47 kJ/kgK, 1.26 to 1.84 kJ/kgK and 1.32 to 1.99 kJ/kgK; thermal conductivity 0.21 to 0.47 W/mK, 0.34 to 0.52 W/mK, and 0.26 to 0.60 W/mK and thermal diffusivity 0.25 to 0.41 x 10-7 m²/s, 0.32 to 0.57 x 10-7 m²/s, and 0.32 to 0.60 x 10-7 m²/s at 30, 40, and 50°C respectively for the moisture ranges studied. The temperature and moisture content effect were not significant (p>0.05) with specific heat and thermal diffusivity but significant (p<0.05) with thermal conductivity in third-order polynomial. A non-linear relationship was established between the three thermal properties and moisture content within the studied temperature range. The resulting regression models for the thermal properties gave a high coefficient of determinations (R2 ≥ 0.7995) which implies that they can be used to describe the relationships between temperature, moisture, and thermal properties of jack bean seeds.


Author(s):  
Siti Shahirah Suhaili ◽  
Md Azree Othuman Mydin ◽  
Hanizam Awang

The addition of mesocarp fibre as a bio-composite material in foamed concrete can be well used in building components to provide energy efficiency in the buildings if the fibre could also offer excellent thermal properties to the foamed concrete. It has practical significance as making it a suitable material for building that can reduce heat gain through the envelope into the building thus improved the internal thermal comfort. Hence, the aim of the present study is to investigate the influence of different volume fractions of mesocarp fibre on thermal properties of foamed concrete. The mesocarp fibre was prepared with 10, 20, 30, 40, 50 and 60% by volume fraction and then incorporated into the 600, 1200 and 1800 kg/m3 density of foamed concrete with constant cement-sand ratio of 1:1.5 and water-cement ratio of 0.45. Hot disk thermal constant analyser was used to attain the thermal conductivity, thermal diffusivity and specific heat capacity of foamed concrete of various volume fractions and densities. From the experimental results, it had shown that addition of mesocarp fibre of 10-40% by volume fraction resulting in low thermal conductivity and specific heat capacity and high the thermal diffusivity of foamed concrete with 600 and 1800 kg/m3 density compared to the control mix while the optimum amount of mesocarp fibre only limit up to 30% by volume fraction for 1200 kg/m3 density compared to control mix. The results demonstrated a very high correlation between thermal conductivity, thermal diffusivity and specific heat capacity which R2 value more than 90%.


2014 ◽  
Vol 982 ◽  
pp. 100-103 ◽  
Author(s):  
Dana Koňáková ◽  
Monika Čáchová ◽  
Eva Vejmelková ◽  
Martin Keppert ◽  
Robert Černý

This article deals with thermal properties of selected kinds of timber. Wood, generally, is one of often used natural materials in building structures. For our research, woods were selected according to frequency of utilization in civil engineering branch. Four different timbers were chosen, and experimental determinations of their properties were performed. Basic physical properties as well as thermal properties belong among studied characteristics. From achieved results, it is obvious, that the bulk density of studied wood ranges between 373 kg m-3 and 649 kg m-3, the open porosity differ by 13%. Regarding thermal properties, values of the thermal conductivity as well as the specific heat capacity are influenced mainly by the open porosity and moisture content. The thermal conductivity in dry state varies by about 31% while in the case of the specific heat capacity the difference is about 19%. Obtained date will be used in the mathematical analysis of heat transport in building structures.


2020 ◽  
Vol 45 (4) ◽  
pp. 71-80
Author(s):  
Ide Ejike ◽  
Ike Oluka ◽  
Eze Chukwuka

The specific heat, thermal conductivity and thermal diffusivity of the Horse-Eye bean (Mucuna sloanei) were determined as a function of moisture content using the method reported by A.O.A.C (2000). The sample varieties used were the Big Sized and the Small Sized Horse-Eye bean. The specific heat and the thermal conductivity were measured using a Bomb Calorimeter. The thermal diffusivity was calculated from the measured specific heat, thermal conductivity and bulk density of the samples. Within the moisture range of 10.5% to 16.87% (b.b), the specific heat, thermal conductivity and thermal diffusivity varied with the moisture content. Results showed that the specific heat, thermal conductivity and thermal diffusivity of the Horse-Eye bean seeds ranged from 116.76 to 203.29 kJ/kgK; 21.07 to 32.23 W/moC; and 3.12 x 10-7 to 9.19 x 10-7 m 2 /s, for the Big Sized varieties, and 112.06 to 194.61 kJ/kgK; 19.85 to 24.08 W/moC; and 3.05 x 10-7 to 6.71 x 10-7 m 2 /s, for the Small Sized varieties as the moisture content increases from 10.5% to 16.87%. Regression analysis were also carried out on the thermal properties of the Horse-Eye bean varieties and moisture content, and there was positive relationship between the parameters. There were significant effects of moisture content (p < 0.05) on all the parameters conducted. The findings and the data generated will create an impact in the food processing industries for Horse-Eye bean.


2019 ◽  
Vol 955 ◽  
pp. 25-30
Author(s):  
Lucie Marackova ◽  
Veronika Melcova ◽  
Josef Samek ◽  
Oldrich Zmeskal

This paper is focused on the determination of thermal parameters (thermal conductivity, thermal diffusivity, and specific heat capacity) of electrical insulating paper from various producers. The transient step-wise method was used to determine all thermal parameters simultaneously. Evaluation was carried out using the differential method. Thermal conductivity was determined from the steady-state temperature response on thickness (corresponding to the number of paper layers), while thermal diffusivity and specific heat capacity was obtained from the dependence of derivative maximum and the corresponding temperature on thickness. Four electro insulating papers differing by composition and thickness: materials NKN (Nomex-Kapton-Nomex), DMD (Dacron-Mylar-Dacron), TFT (TufQUIN TFT 50) and TVAR (ThermaVolt AR) were studied. As a result, the highest value of thermal conductivity (0.17 W/m/K) was determined for the DMD. Remaining three materials possessed thermal conductivity about 0.12 W/m/K. However, differences in specific heat capacity and thermal diffusivity were found to be significantly higher. The lowest specific heat capacity was found for the DMD sample (1200 J/kg/K), while the highest specific heat capacity was found for TVAR sample (4000 J/kg/K).


2013 ◽  
Vol 548 ◽  
pp. 231-238 ◽  
Author(s):  
Paulo Amaral ◽  
António Correia ◽  
Luís Lopes ◽  
Paula Rebola ◽  
António Pinho ◽  
...  

The use of dimension stones in architecture and civil engineering implies the knowledge of several mechanical, physical, and chemical properties. Even though it has been usual practice to measure physical and mechanical properties of dimension stones the same is not true for thermal properties such as thermal conductivity, thermal diffusivity, specific heat capacity, and heat production. These properties are particularly important when processes related with heating and cooling of buildings must be considered. Thermal conductivity, thermal diffusivity, and specific heat capacity are related with the way thermal energy is transmitted and accumulated in stones; heat production has to do with the amount of radioactive elements in the rocks and so with the environmental impact of radioactivity and public health problems. It is important to start to measure on a routine basis those four thermal properties in rocks and, in particular, in dimension rocks so that their application can be improved and optimized. With this is mind three sets of different rock types (granites, limestones, and marbles) were collected to measure the thermal conductivity, the thermal diffusivity, and the specific heat capacity with the objective of characterizing them in terms of those properties. Since the same set of rocks has also been studied for other physical properties, a correlation amongst all the measured properties is attempted. For each rock type several samples were used to measure the thermal conductivity, the thermal diffusivity, and the specific heat capacity, and average values were obtained and are presented. As an example, for granites the thermal conductivity varies between 2.87 and 3.75 W/mK; for limestones varies between 2.82 and 3.17 W/mK; and for marbles varies between 2.86 and 3.02 W/mK. It is hoped that measuring thermal properties on dimension stones will help to better adequate them to their use in civil engineering as well as to adequate their use in terms of a CE product.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Akeem O. Raji ◽  
Hajarat O. Nassam ◽  
Tawakalitu E. Aruna ◽  
Monsurat O. Raji ◽  
Maimuna Sani

Acha is a less utilized cereal grain in Africa. Scaling up of the processing technology of acha seeds is desirable if accurate information on effect of processing on its properties is available. This study investigated the effect of cooking duration on the chemical and physical properties of acha seeds. Cooking times (2.5, 5, 7.5 and 10 minutes) at 100oC were used. The volume, length, breadth, thickness, porosity, density, sphericity, aspect ratio, specific heat capacity, thermal conductivity, thermal diffusivity, moisture, protein, fat, ash, crude fibre and carbohydrate were determined using standard methods. Data were analysed using ANOVA at p = 0.05. The results obtained revealed that varietal difference had a significant effect on volume, length, breadth, thickness, true density, bulk density, porosity, sphericity and aspect ratio. The moisture content, ash, protein, crude fibre, fat, carbohydrate, specific heat capacity, thermal conductivity and thermal diffusivity varied from 8.80 - 56.17 %, 0.32 - 1.87%, 1.92 - 11.50%, 0.29 - 1.58%, 0.32 - 2.81%, 40.94 - 76.26%, 1.66 -2.97 kJkg-1K-1, 0.26 -0.43 Wm-1K-1 and 0.85 x 10-7 - 1.17 x 10-7 ms-2 respectively, as significantly influenced by cooking time. Cooking for 7.5 minutes was appropriate using the moisture uptakes and thermal properties as criteria. 


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Johnson O Oyebode ◽  
Vivian N Mbagwu ◽  
Modupe A Onitiri ◽  
Olayinka O Adewumi

Thermal properties of materials such as plastic matrix composite is one of the important parameters for determining their behaviour and relevant applications. This present work focuses on determining the thermal behaviour of epoxy and polypropylene (PP) matrix composite reinforced with iron ore tailings (IOT) particulates of sizes 150 µm, 212 µm and 300 µm at various loadings of 5%, 10%, 15%, 20%, 25%, and 30%. The thermal behaviour of the developed composites was investigated experimentally using a KD2 pro thermal analyser. The results obtained from the experiment showed that increasing filler loading in epoxy leads to increased specific heat capacity and thermal resistivity. The maximum values recorded for the thermal resistivity and specific heat capacity were 0. 592°C.m/W and 2.352 J/kgK respectively. Thermal conductivity and thermal diffusivity of values 0.168W/mK and 0.089 mm²/s respectively were the lowest obtained for the epoxy matrix composite. It was also observed that addition of IOT in PP had significant effect on the thermal properties of the PP composite. Thermal conductivity and thermal diffusivity were found to increase with increased particle loading compared to the pure PP sample; the highest value being 2.235 W/mK and 5.51 mm²/s for thermal conductivity and thermal diffusivity respectively while low values of 0.05 Cm/W and 0.371 J/kgK was recorded for thermal resistivity and specific heat capacity. The presence of iron ore tailings reduces the thermal conductivity and diffusivity in epoxy but increases the conductivity and diffusivity in polypropylene. Keywords— Composite, Epoxy, IOT, Polypropylene, Composite, Thermal Conductivity


2017 ◽  
Vol 36 (3) ◽  
pp. 936-943
Author(s):  
FU Asoiro ◽  
CJ Ohagwu

The thermal heat conductivity, specific heat capacity, thermal heat diffusivity and bulk density of Prosopis africana seeds were determined as a function of moisture content. Specific heat capacity was measured by the method of mixture while the thermal heat conductivity was measured by the guarded hot plate method. Thermal heat diffusivity was calculated from the experimental results obtained from specific heat capacity, thermal heat conductivity and bulk density. The bulk density for Prosopis africana (PA) seeds decreased from 890kg m-3 to 590kg m-3 as moisture content increased from 4 to 20% wet basis (w.b). Specific heat capacity increased from 2760J kg-1 ºC-1 to 2960J kg-1 ºC-1with increasing moisture content. The thermal heat conductivity ranged between 0.70 and 0.90W m-1oC-1 when moisture content rose from 4% to 20% (w.b). Thermal heat diffusivity increased from 2.7 10-7 to 4.2 10-7m2 s-1 as moisture content increased from 4 to 20% (w.b). The values obtained for these thermal properties and bulk density could be useful for design of systems for heat treatment of Prosopis africana seeds.  http://dx.doi.org/10.4314/njt.v36i3.38


Sign in / Sign up

Export Citation Format

Share Document