scholarly journals MODELING AND SIMULATION OF THE VERTICAL AXIS WIND TURBINE BY QBLADE SOFTWARE

Author(s):  
MERAD ◽  
Asmae BOUANANI ◽  
Mama BOUCHAOUR

The use of wind energy has no harmful effects on the environment. This makes it a clean energy that is a real alternative to the problem of nuclear waste management and greenhouse gas emissions. Vertical axis wind turbines have prospective advantages in the field of domestic applications, because they have proven effectual in urban areas where wind flow conditions are intermittent, omnidirectional, unsteady and turbulent. The wind cannot ensure a regular energy supply without optimising the aerodynamics of the blades. This article presents a reminder about wind energy and wind turbines, especially the VAWT type wind turbines and also gives a presentation on the aerodynamic side of VAWT by studying the geometry and aerodynamic characteristics of the blade profiles with the acting forces and also the explanation of the DMS multiple flow tube model. This work also gives the different simulation methods to optimize the behaviour of the blades from the selected NACA profiles; the analysis first goes through the design of the blades by the design and simulation software Qblade which is used to calculate also the forces on the blade and the coefficients of lift, drag and fineness. At the end of this article we have the DMS simulation of the VAWT turbines, by determining the power coefficient and the power collected by the turbine to select the wind turbine adapted to a well characterized site.

2021 ◽  
Author(s):  
Moshe Zilberman ◽  
Abdelaziz Abu Sbaih ◽  
Ibrahim Hadad

Abstract Wind energy has become an important resource for the growing demand for clean energy. In 2020 wind energy provided more than 6% of the global electricity demand. It is expected to reach 7% at the end of 2021. The installation growth rate of small wind turbines, though, is relatively slow. The reasons we are interested in the small vertical axis wind turbines are their low noise, environmentally friendly, low installation cost, and capable of being rooftop-mounted. The main goal of the present study is an optimization process towards achieving the optimal cost-effective vertical wind turbine. Thirty wind turbine models were tested under the same conditions in an Azrieli 30 × 30 × 90 cm low-speed wind tunnel at 107,000 Reynolds number. The different types of models were obtained by parametric variations of five basic models, maintaining the same aspect ratio but varying the number of bucket phases, the orientation angles, and the gaps between the vanes. The best performing turbine model was made of one phase with two vanes of non-symmetric bipolynomial profiles that exhibited 0.2 power coefficient, relative to 0.16 and 0.13 that were obtained for symmetrical polynomial and the original Savonius type turbines, respectively. Free rotation, static forces and moments, and dynamic moments and power were measured for the sake of comparison and explanation for the variations in performances of different types of turbines. CFD calculations were used to understand the forces and moment behaviors of the optimized turbine.


2014 ◽  
Vol 529 ◽  
pp. 173-177
Author(s):  
Li Hua Zhao ◽  
Ming Liu ◽  
Tie Lv ◽  
Xiao Qun Mei

Research of blade airfoil aerodynamic characteristics is an important foundation for the vertical axis wind turbine aerodynamic design and performance analysis. CFD simulation software has been applied in this paper. Representative lift-type vertical axis wind turbine airfoil NACA0014, NACA2414, NACA4414, NACA6414, NACA8414 's aerodynamic simulation have been studied. Camber airfoil relative with the change in to the flow velocity is analyzed. At different angles of attack effect on the aerodynamic performance of wind turbines, variation of parameters for airfoil aerodynamic had been analyzed. It will help the optimal design of airfoils for vertical axis wind turbines.


Author(s):  
Samyak Jain ◽  
Gautam Singh ◽  
Varun Yadav ◽  
Rahul Bisht

Currently, many countries are racing towards switching to clean energy resource (1). Among the options available Solar and Wind are two viable options that are economically feasible. Each day a new development is helping in bringing down the cost of energy extracted from these sources. With currently available technologies, solar energy is almost as expensive as the energy generated from burning coal, whereas wind energy is still slightly expensive (2). However, wind energy could be made cheaper by the use of a vertical axis wind turbine (3). However, structure is a major factor that is holding back the development of VAWTs with better efficiency (4). The efficiency of a VAWT depends upon its aspect ratio. Aspect Ratio is the ratio of the height of the blade to the diameter of the turbine. The lower the aspect ratio, the higher the efficiency (5). However, decreasing the AR would mean either increasing the diameter of the turbine or the height of the blade. In either case, the bending moment would increase on the struts, that connect the blades to the shaft. In this paper we propose, struts with airfoil cross-section. This is because, the lift generated by airfoil struts acts as additional support for the blade, thus increasing our ability to work at lower aspect ratios.


2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 821 ◽  
Author(s):  
Mohammad Ebrahimpour ◽  
Rouzbeh Shafaghat ◽  
Rezvan Alamian ◽  
Mostafa Safdari Shadloo

Exploiting wind energy, which is a complex process in urban areas, requires turbines suitable for unfavorable weather conditions, in order to trap the wind from different directions; Savonius turbines are suitable for these conditions. In this paper, the effect of overlap ratios and the position of blades on a vertical axis wind turbine is comprehensively investigated and analyzed. For this purpose, two positive and negative overlap situations are first defined along the X-axis and examined at the different tip speed ratios of the blade, while maintaining the size of the external diameter of the rotor, to find the optimum point; then, the same procedure is done along the Y-axis. The finite volume method is used to solve the computational fluid dynamics. Two-dimensional numerical simulations are performed using URANS equations and the sliding mesh method. The turbulence model employed is a realizable K-ε model. According to the values of the dynamic torque and power coefficient, while investigating horizontal and vertical overlaps along the X- and Y-axis, the blades with overlap ratios of HOLR = +0.15 and VOLR = +0.1 show better performances when compared to other corresponding overlaps. Accordingly, the average Cm and Cp improvements are 16% and 7.5%, respectively, compared to the base with a zero overlap ratio.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879954
Author(s):  
Soo-Yong Cho ◽  
Sang-Kyu Choi ◽  
Jin-Gyun Kim ◽  
Chong-Hyun Cho

In order to augment the performance of vertical axis wind turbines, wind power towers have been used because they increase the frontal area. Typically, the wind power tower is installed as a circular column around a vertical axis wind turbine because the vertical axis wind turbine should be operated in an omnidirectional wind. As a result, the performance of the vertical axis wind turbine depends on the design parameters of the wind power tower. An experimental study was conducted in a wind tunnel to investigate the optimal design parameters of the wind power tower. Three different sizes of guide walls were applied to test with various wind power tower design parameters. The tested vertical axis wind turbine consisted of three blades of the NACA0018 profile and its solidity was 0.5. In order to simulate the operation in omnidirectional winds, the wind power tower was fabricated to be rotated. The performance of the vertical axis wind turbine was severely varied depending on the azimuthal location of the wind power tower. Comparison of the performance of the vertical axis wind turbine was performed based on the power coefficient obtained by averaging for the one periodic azimuth angle. The optimal design parameters were estimated using the results obtained under equal experimental conditions. When the non-dimensional inner gap was 0.3, the performance of the vertical axis wind turbine was better than any other gaps.


Author(s):  
David MacPhee ◽  
Asfaw Beyene

Blade pitch control has been extremely important for the development of Horizontal-Axis Wind Turbines (HAWTs), allowing for greater efficiency over a wider range of operational regimes when compared to rigid-bladed designs. For Vertical-Axis Wind Turbines (VAWTs), blade pitching is inherently more difficult due to a dependence of attack angle on turbine armature location, shaft speed, and wind speed. As a result, there have been very few practical pitch control schemes put forward for VAWTs, which may be a major reason why this wind turbine type enjoys a much lower market share as compared to HAWTs. To alleviate this issue, the flexible, straight-bladed vertical-axis turbine is presented, which can passively adapt its geometry to local aerodynamic loadings and serves as a low-cost blade pitch control strategy increasing efficiency and startup capabilities. Using two-dimensional fluid-structure action simulations, this novel concept is compared to an identical rigid one and is proven to be superior in terms of power coefficient due to decreased torque minima. Moreover, due to the flexible nature of the blades, the morphing turbine achieves less severe oscillatory loadings. As a result, the morphing blade design is expected to not only increase efficiency but also system longevity without additional system costs usually associated with active pitch control schemes.


Author(s):  
K. Vafiadis ◽  
H. Fintikakis ◽  
I. Zaproudis ◽  
A. Tourlidakis

In urban areas, it is preferable to use small wind turbines which may be integrated to a building in order to supply the local grid with green energy. The main drawback of using wind turbines in urban areas is that the air flow is affected by the existence of nearby buildings, which in conjunction with the variation of wind speed, wind direction and turbulence may adversely affect wind energy extraction. Moreover, the efficiency of a wind turbine is limited by the Betz limit. One of the methods developed to increase the efficiency of small wind turbines and to overcome the Betz limit is the introduction of a converging – diverging shroud around the turbine. Several researchers have studied the effect of shrouds on Horizontal Axis Wind Turbines, but relatively little research has been carried out on shroud augmented Vertical Axis Wind Turbines. This paper presents the numerical study of a shrouded Vertical Axis Wind Turbine. A wide range of test cases, were examined in order to predict the flow characteristics around the rotor, through the shroud and through the rotor – shroud arrangement using 3D Computational Fluid Dynamics simulations. The power output of the shrouded rotor has been improved by a factor greater than 2.0. The detailed flow analysis results showed that there is a significant improvement in the performance of the wind turbine.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Gabriel Naccache ◽  
Marius Paraschivoiu

Small vertical axis wind turbines (VAWTs) are good candidates to extract energy from wind in urban areas because they are easy to install, service, and do not generate much noise; however, the efficiency of small turbines is low. Here-in a new turbine, with high efficiency, is proposed. The novel design is based on the classical H-Darrieus VAWT. VAWTs produce the highest power when the blade chord is perpendicular to the incoming wind direction. The basic idea behind the proposed turbine is to extend that said region of maximum power by having the blades continue straight instead of following a circular path. This motion can be performed if the blades turn along two axes; hence, it was named dual vertical axis wind turbine (D-VAWT). The analysis of this new turbine is done through the use of computational fluid dynamics (CFD) with two-dimensional (2D) and three-dimensional (3D) simulations. While 2D is used to validate the methodology, 3D is used to get an accurate estimate of the turbine performance. The analysis of a single blade is performed and the turbine shows that a power coefficient of 0.4 can be achieved, reaching performance levels high enough to compete with the most efficient VAWTs. The D-VAWT is still far from full optimization, but the analysis presented here shows the hidden potential and serves as proof of concept.


2021 ◽  
Author(s):  
Hao Su ◽  
Haoran Meng ◽  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Abstract Wind energy has attracted worldwide attention as a pollution-free and widely distributed renewable energy source. Increasing the power density by optimizing the arrangement of wind turbines has been a popular field of research in recent years. In the present work, a systematic study on the influence of array configuration on vertical axis wind turbines is made through wind tunnel experiments. Firstly, the power performance of an isolated vertical axis wind turbine at different tip speed ratios is tested as a benchmark of comparison. Multiple situations of two-turbine configurations are then tested and the results are compared with the isolated wind turbine. The power coefficient of the turbine pair increases by 34% when the turbines are 2.4 rotor diameters apart and rotate in the same direction. In the counter-rotating co-leeward case, it is demonstrated that the turbine pairs will have a positive effect on each other when they are separated by 2.1 rotor diameters to 2.4 rotor diameters. The lateral spacing between the counter-rotating co-windward turbine pair should be greater than 1.5 rotor diameters to avoid turbulence interference between the rotors.


Sign in / Sign up

Export Citation Format

Share Document