scholarly journals Assessment of Smog Pattern and its Effects on Visibility in Lahore Using Remote Sensing and GIS

Author(s):  
Zartab Jahan ◽  
Faiza Sarwar ◽  
Isma Younes ◽  
Rakhshanda Sadaf ◽  
Adeel Ahmad

In recent times, many parts of the world are experiencing drastic levels of air pollution, which includessmog, the mixture of fog and smoke, polluted air formed by human activities like burning of coal, excessive use ofvehicles and many others. During November 2016, Lahore city also experienced the smog due to increased level of airpollutants. In earlier studies, very limited research work has been done related to smog, therefore, this research is aimedto study the pattern of smog in Lahore and its impact on visibility through remote sensing and GIS. Satellite images ofMODIS and Landsat OLI, of November, 2016 is used to study the pattern of smog, whereas the visibility data wasacquired from Pakistan Meteorological Department (PMD). For the processing and analysis of data ERDAS IMAGINE14 and ArcGIS 10.1 software were used. The findings of this research reveal that the dense smog cover on 2nd, 3rd,and 4th November 2016 leads to the considerable reduction in visibility. As on 2nd November’16, it was only 111.6meters (m) while during bright days it was recorded more than 300 m or 400 m.

2019 ◽  
Vol 10 (2) ◽  
pp. 55-59
Author(s):  
Zartab Jahan ◽  
Faiza Sarwar ◽  
Isma Younes ◽  
Rakhshanda Sadaf ◽  
Adeel Ahmad

In recent times, many parts of the world are experiencing drastic levels of air pollution, which includessmog, the mixture of fog and smoke, polluted air formed by human activities like burning of coal, excessive use ofvehicles and many others. During November 2016, Lahore city also experienced the smog due to increased level of airpollutants. In earlier studies, very limited research work has been done related to smog, therefore, this research is aimedto study the pattern of smog in Lahore and its impact on visibility through remote sensing and GIS. Satellite images ofMODIS and Landsat OLI, of November, 2016 is used to study the pattern of smog, whereas the visibility data wasacquired from Pakistan Meteorological Department (PMD). For the processing and analysis of data ERDAS IMAGINE14 and ArcGIS 10.1 software were used. The findings of this research reveal that the dense smog cover on 2nd, 3rd,and 4th November 2016 leads to the considerable reduction in visibility. As on 2nd November’16, it was only 111.6meters (m) while during bright days it was recorded more than 300 m or 400 m.


2009 ◽  
Vol 12 (12) ◽  
pp. 52-58
Author(s):  
Thao Thi Phuong Pham ◽  
Duan Dinh Ho ◽  
To Van Dang

Remote sensing technology nowadays is one of the most useful tools for scientific research in general and for oceanography in particular. From satellite images, the useful information such as waterline images can be extracte for a large region simultaneously. After tidal adjustments, the waterlines can be used as the observed shorelines which are important inputs for estimating shoreline changes by either using the integration of remote sensing and GIS or using numerical models. Based on the spectral bands of various Landsat images, the paper presents the methods to detect the waterlines in Phan Thiet region in the 40 years period using the images of 1973, 1976, 1990, and 2002 respectively. The extracted results relatively agree with the information of waterline from the images.


Author(s):  
Bad-reddine Boudriki Semlali ◽  
Chaker El Amrani ◽  
Siegfried Denys

Air pollution is one of the most serious problems the world faces today. It is highly necessary to monitor pollutants in real-time to anticipate and reduce damages caused in several fields of activities. Likewise, it is necessary to provide decision makers with useful and updated environmental data. As a solution to a part of the above-mentioned necessities, we developed a Java-based application software to collect, process and visualize several environmental and pollution data, acquired from the Mediterranean Dialog earth Observatory (MDEO) platform [1]. This application will amass data of Morocco area from EUMETSAT satellites, and will decompress, filter and classify the received datasets. Then we will use the processed data to build an interactive environmental real-time map of Morocco. This should help finding out potential correlations between pollutants and emitting sources.


2021 ◽  
Vol 16 (3) ◽  
pp. 953-962
Author(s):  
Basavaraju Basavaraju ◽  
D. Nagaraju D. Nagaraju

The current research work is an attempt to study of drainage area covering 429 sqkms comprising of 10 sub-watersheds they are namely Heggadadevanakote, Budanuru, Kodasige, Yedenhundi, Sunkadakatte, Nagarahole, Muruganahalli, Heggadapura, Kalhalla, Sarathihole. The research area has strong structural control shows that the 10 sub-basins named as the normal category. Different parameters of morphometric were used, Arc-Info and Arc -View GIS software was used to analysis the morphometric parameters and drainage characteristics, Sub-basin have been delineated by drainage pattern. The drainage pattern suggesting very coarse to coarse texture and the density explains the texture of drainage is related to coarse as geomorphic development their late youth stage and values suggest that Form factor, Circulatory ratio, Sub-basins are circular to elongated in shape.


Resources ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 149 ◽  
Author(s):  
Avtar ◽  
Sahu ◽  
Aggarwal ◽  
Chakraborty ◽  
Kharrazi ◽  
...  

Renewable energy has received noteworthy attention during the last few decades. This is partly due to the fact that fossil fuels are depleting and the need for energy is soaring because of the growing population of the world. This paper attempts to provide an idea of what is being done by researchers in remote sensing and geographical information system (GIS) field for exploring the renewable energy resources in order to get to a more sustainable future. Several studies related to renewable energy resources viz. geothermal energy, wind energy, hydropower, biomass, and solar energy, have been considered in this paper. The focus of this review paper is on exploring how remote sensing and GIS-based techniques have been beneficial in exploring optimal locations for renewable energy resources. Several case studies from different parts of the world which use such techniques in exploring renewable energy resource sites of different kinds have also been included in this paper. Though each of the remote sensing and GIS techniques used for exploration of renewable energy resources seems to efficiently sell itself in being the most effective among others, it is important to keep in mind that in actuality, a combination of different techniques is more efficient for the task. Throughout the paper, many issues relating to the use of remote sensing and GIS for renewable energy are examined from both current and future perspectives and potential solutions are suggested. The authors believe that the conclusions and recommendations drawn from the case studies and the literature reviewed in the present study will be valuable to renewable energy scientists and policymakers.


Author(s):  
Dipti Bakare

Abstract: Urbanization may be a process having a serious impact ashore use characteristics. Basically, as an impression of urbanization, the world is observed with rapid change within the land use character of agricultural land. Generally, the agricultural land is employed for various development activities like industrial establishments, residential colonies and other urban infrastructure during the method of urbanization. it's necessary to possess a periodical assessment of land use change for the developing populated area , which helps to make a decision the longer term expansion strategies for the world. Nashik city is located in the state of Maharashtra in the western part of India. It is one of the most dynamic cities of India with a rapid growth rate due to migration from various parts of Maharashtra. The Nashik city is presently spread over an area of 264.15 sq. km. with a periodical increase in municipal corporation boundary during the last few decades. As a result of urbanization and expansion of municipal corporation limits, the city has undergone drastic changes in land use character. In this study, land-use change is quantified for the existing six zones of Nashik city during the last 30 years using remote sensing and GIS. The study has analysed the relationship between urban expansion and the loss of agricultural land because of an increase in a built-up area and other land use. The study present excellent scenario for land use change during the year 1991, 2001, 2011 and 2020. This can surely guide the development strategies for the study area of Nashik. Also the study can be extended for conducting a suitability analysis to assess future change of land use based on various criteria. Keywords: Land use, Remote sensing, GIS, Supervised classification, Urbanization, Agricultural land loss


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hua Xu ◽  
Shuqiang Cheng ◽  
M. Prabhu ◽  
Anoop Kumar Sahu

Coals are employed as fiery substance, and every day, millions of ton coal are consumed by coal users around the world. It is investigated that the millions of coal’s transportation/logistic till the coal user plants via road route and also inside the coal user plants (known as twice factors) not only enhance the air pollution but also cause the global warming. It is earlier known that coals emit the toxic pollutants and offensive gases such as sulfur dioxide, SO2; nitrogen oxides, NOX; hydrogen chloride arsenic; carbon monoxide, CO; methane; CH4; and CO2 on reacting with environmental O2 due to said twice factors, i.e., during the transportation from coal refinery spot to entry gate of coal user plants (another spot) and in process logistic/movement inside the coal user plants (loading to conveyor to coal fire tubes “attached with coal crushers”). Therefore, the coal refinery technique/process is found as the best practice to control air pollution under concerns of twice factors. The reliable and trustworthy coal refining technology improves the quality of coal by eradicating or eliminating the coating or layers of toxic particles from coal’s surface, which speedily crumble or decompose in reacting with environmental O2 under twice factors. As results, coal refining technology adds the green supply chain value into proposed twice factors and also save the world from breeding of ills and viruses. It is understood that the best coal refinery technique/process helps to overcome and reduce air pollution by responding discussed twice factors (accepted as research challenge and motivation of research). In the presented research work, the authors developed and proposed a dynamic multidimension Coal Refinery Process Absorbability Index (CRPAI) structure (consisted of coal refinery core dimension and subdimensions correspond to CRPA alternative techniques/processes) appended with Robust Optimization Algorithm (ROA) to be explored for opting the best CRP from available options. But due to inherent ambiguity, vagueness, and inconsistency involve in both dimensions of proposed structure, the assessment of expert’s panel is gathered in the terms of linguistic variable “appropriateness ratings” against the subdimensions of CRPAI structure corresponding to preferred CRP options. Next, assigned appropriateness ratings against the subdimensions are substituted by GIVFN. To arrive to core dimensions from subdimensions of CRPAI structure, a GITFN-OWGO (Ordered Weighted Geometric Operator) is investigated and modified as a Ordered Weighted Geometric Average Operator (OWGAO) to be applied for estimating the weights of subdimensions (core novelty of work). Finally, a ROA (consisted of MULTI-MOORA with dominance theory) is applied on the output of OWGAO for opting the viable and best CRP option. The positive effect of the dynamic multidimension CRPAI structure is that it helps the coal refinery companies to assess measure and evaluate the best and feasible coal refinery process under concern of twice factors using expert information. The research can be used to control the air pollution by responding aforesaid twice factors by single practice (the best coal refinery process/technique assessment and evaluation).


2020 ◽  
Vol 8 (6) ◽  
pp. 5119-5125

Urban growth of Chennai district is exponential and heading towards extreme urbanisation. Hence this necessitates the study of urban growth in Chennai district. The recent advancement in Remote sensing and GIS has an excellent ability to derive various data from the satellite images obtained .This helps us to map, monitor and picturise various aspects of development with respect to their demands. The basic principle of remote sensing is followed as the methodology. By following the methodology correctly and by proper processing of the data acquired from the satellite images, the exact requirements of information can be obtained. The Change in the urban growth of the Chennai district for three decades from 1989 to 2019 have been found by using remote sensing and GIS techniques. The satellite images of various years are obtained from Landsat satellite from the USGS Earth Explorer .The Land use characteristics of Chennai district of each year can be obtained by preparing the land use land cover map of Chennai district by the use of landsat satellite images. The two software namely ArcGIS and ERDAS Imagine are used to create the Land use land cover map. From the Land use land cover map of Chennai district, the change detection and statistical analysis of three decades are done and these analysis clearly shows that the urban growth of Chennai district is constantly increasing and there is a huge decrease in other natural features such as vegetation, water body and barren land. By performing urban trend analysis the urban growth of Chennai district for the upcoming years are predicted to prove the urban agglomeration in Chennai district.


Sign in / Sign up

Export Citation Format

Share Document