scholarly journals USING MICROWAVE TECHNIQUE TO TREAT CONTAMINATED DRILL CUTTINGS

2020 ◽  
Vol 53 (2D) ◽  
pp. 42-52
Author(s):  
Ahmed Khudhair

Drilling waste is a vital and persistent problem found in the petroleum industry which is mainly related to drilling and oil production. When drilling fluids ruminants are discharged on the ground, human health is affected by the toxic of oil contamination and the chemicals of liquid fraction ruin organisms functional and contaminate the groundwater as a result of seeping. A microwave technique was used to treat the remain drill cuttings resulting from drilling fluid. Whereas amounts of drill cuttings were taken from the southern Rumaila oilfields, prepared for testing and fixed with 100 gm per sample and contaminated with two types of crude oil, one from the southern Rumaila oilfields with Specific gravity of 0.882 and the other crude oil from the eastern Baghdad oilfield of Specific gravity 0.924. The concentrations of 7.5%, 10%, 12.5% ​​and 15% w/w in mass was chosen to be the pollution percentage. Samples were treated in the microwave with different power applied of 180, 540, and 900 watt and a time period of 50 minutes is divided into 5 parts for analysis 0, 10, 20, 30 and 50 min. the purpose of this study was trying to reach the zero-discharge concept treatment or near. It was found that the results of 22 sample reached below 1% w/w in mass, except for two samples of 180-watt power applied and oil contamination of 15% w/w in mass they reached about 1.5-1% w/w in mass. The results show a great declination in oil contamination even with highest pollution with lower power applied.

2021 ◽  
Vol 22 (1) ◽  
pp. 21-27
Author(s):  
Ahmed Ameen Khdair ◽  
Ayad A. Al-Haleem

In this research paper, two techniques were used to treat the drill cuttings resulting from the oil-based drilling fluid. The drill cuttings were taken from the southern Rumaila fields which prepared for testing and fixed with 100 gm per sample and contaminated with two types of crude oil, one from Rumaila oilfields with Sp.gr of 0.882 and the other from the eastern Baghdad oilfield with Sp.gr of 0.924 besides contamination levels of 10% ​​and 15% w/w in mass. Samples were treated first with microwave with a power applied of 540 & 180 watts as well as a time of 50 minutes. It was found that the results reached below 1% w/w in mass, except for two samples they reached below 1.5% w/w in mass. Then, the sample of 1.41% w/w in mass, which has the highest contamination level after microwave treatment, was treated on three groups of earthworms. After the appropriate conditions, samples were prepared for treating by earthworms and for an incubation period of 21 days, the results highlighted the effectiveness of the succession process by reaching concentrations below 0.92%, 0.65%, and 0.42% w/w in mass.


2021 ◽  
Author(s):  
Thenuka M. Ariyaratna ◽  
Nihal U. Obeyesekere ◽  
Tharindu S. Jayaneththi ◽  
Jonathan J. Wylde

Abstract A need for more economic drilling fluids has been addressed by repurposing heavy brines typically used as completion fluids. Heavy brine corrosion inhibitors have been designed for stagnant systems. Drilling fluids are subjected to both heavy agitation and aeration through recirculation systems and atmospheric exposure during the various stages of the drilling process. This paper documents the development of heavy brine corrosion inhibitors to meet these additional drilling fluid requirements. Multiple system scenarios were presented requiring a methodical evaluation of corrosion inhibitor specifications while still maintaining performance. Due to the high density of heavy brine, traditional methods of controlling foaming were not feasible or effective. Additional product characteristics had to be modified to allow for the open mud pits where employees would be working, higher temperatures, contamination from drill cuttings, and product efficacy reduction due to absorption from solids. The product should not have any odor, should have a high flash point, and mitigate corrosion in the presence of drill cuttings, oxygen, and sour gases. Significant laboratory development and testing were done in order to develop corrosion inhibitors for use in heavy brines based on system conditions associated with completion fluids. The application of heavy brine as a drilling fluid posed new challenges involving foam control, solubility, product stability, odor control, and efficacy when mixed with drill cuttings. The key to heavy brine corrosion inhibitor efficacy is solubility in a supersaturated system. The solvent packages developed to be utilized in such environments were highly sensitive and optimized for stagnant and sealed systems. Laboratory testing was conducted utilizing rotating cylinder electrode tests with drill cuttings added to the test fluid. Product components that were found to have strong odors or low flash points were removed or replaced. Extensive foaming evaluations of multiple components helped identify problematic chemistries. Standard defoamers failed to control foaming but the combination of a unique solvent system helped to minimize foaming. The evaluations were able to minimize foaming and yield a low odor product that was suitable for open mud pits and high temperatures without compromising product efficacy. The methodology developed to transition heavy brine corrosion inhibitors from well completion applications to drilling fluid applications proved to be more complex than initially considered. This paper documents the philosophy of this transitioning and the hurdles that were overcome to ensure the final product met the unique system guidelines. The novel use of heavy brines as drilling fluids has created a need for novel chemistries to inhibit corrosion in a new application.


2017 ◽  
Vol 899 ◽  
pp. 469-473 ◽  
Author(s):  
Irineu Petri Jr. ◽  
Jéssika Marina dos Santos ◽  
Arley Silva Rossi ◽  
Marina Seixas Pereira ◽  
Claudio Roberto Duarte ◽  
...  

Drill cuttings generated by oil and gas drilling process are incorporated into the drilling fluid to ensure an efficient drilling and solids removal. The drilling rigs have a separation system accountable for separating drill cuttings and drilling fluids. Microwave drying is a new technology of separation that has been studied as an alternative to the currently drill cuttings dryer used. The results obtained in preliminary studies showed that this microwave drying is sensitive to different oxides presents into the rock. Thus, this study aimed to describe the microwave heating kinetics of some rocks in order to verify the interaction of oxides with electromagnetic waves. For this, the oxide contents of the rocks were determined by X-ray Fluorescence and different rocks were heated in a microwave heating unit. The results showed that the relationship between the temperature and heating time is exponential and depends on the rock oxide contents. It was found that the iron oxides may be unstable at microwave and rocks with high levels of magnesium oxides and sulfates tend to be good absorbers of microwave. Rocks containing high levels of calcium, silicon, titanium, barium and chloride (NaCl) are not good absorbers of microwave. It was also noted that faster solid heating, lesser the efficiency of microwave drying.


1965 ◽  
Vol 5 (01) ◽  
pp. 6-14 ◽  
Author(s):  
R.F. Burdyn

Abstract The inadequate use of centrifugation to economically recover solids from weighted drilling fluids reflects the need for better equipment and techniques for this purpose. Laboratory studies in the development of an improved separator are described in which an operating equation is derived and tested. Results show that the concentric cylinder geometry employed effectively separates barite from a suspension and that the operating equation provides a good approximation for scale-up. Introduction Our current drilling technology frequently requires a high-density drilling fluid obtained by addition of barite. In the course of drilling, formation solids which are too fine to be removed either by screening or settling become suspended in the drilling fluid and gradually the volume of solids in the mud increases. The volume fraction of solids must be limited (if a satisfactory set of rheological parameters are to be maintained). A centrifugal separator provides an economical way of accomplishing this. The barite recovery process can be considered as a separation of two solids. One, the light solids, composed of formation and added solids, has a specific gravity of 2.6 to 2.7; the other, barite, has a specific gravity of 4.2 to 4.3. This density difference, plus the fact that the average light-solids particle size is much smaller than the average barite particle size, permits separation by a centrifuge. In drilling fluids some of the coarse particles of the light-solids-range will settle faster than fine particles of the barite-particle range. As a result a complete separation of the two species is not possible. Since the object of the process is not merely recovering the maximum amount of barite but includes as well removing the maximum amount of light solids, an optimum barite recovery efficiency exists. From a practical standpoint this optimum cannot be determined in the field for each drilling fluid system, and in practice the separation is less than optimum, with some sacrifice of barite. Drilling technology has included centrifugal separators for barite recovery for more than a decade. Results have been reported by a number of investigators indicating that the process is practical and economical. The decision to use a centrifuge is based on economics in which direct cost savings and the indirect benefits in rig time derived from improvement of the drilling fluid are important factors. One would expect that centrifugal separation of barite from drilling fluids would significantly affect barite consumption; however, this is not the case. The Minerals Yearbook shows an annual domestic barite consumption in the drilling industry of nearly I million tons. By rough estimate there are perhaps 80 separators presently in field use. Assuming half of these in use at any one time, operating an, average of four hours per day, at recovery rates averaging 3,000 lb of barite per hour, total annual recovery is about 90,000 tons. This is less than 10 per cent of the total barite used. I conservatively estimate that barite consumption in drilling operations can be reduced by 30 per cent through greater utilization of centrifugal separators. To encourage more wide- spread acceptance of centrifugal separators in the drilling industry, improved equipment and techniques would be very desirable. The present paper, covering theory and results obtained from a laboratory model, is the first in a series on the development of an improved mud separator for field use. THE CONCENTRIC CYLINDER GEOMETRY AS A SEPARATING DEVICE Consider the geometry shown in Fig. 1, consisting of two concentric cylinders separated by an annular space. These are arranged so that the outer cylinder is fixed and the inner one can be rotated about its axis on shafts sealed against the ends of the outer cylinder. SPEJ P. 6ˆ


Effective hole-cleaning is vital for a successful drilling operation and has significant effect on optimizing factors such as penetration rate, bit optimization and well stability. Efficient transportation of drilling cuttings are dependent on factors such as fluid properties and rheology, cuttings size and shape, fluid velocity, cuttings concentration, cuttings transport velocity and rate of penetration. This experimental work examined the effects of cutting sizes on drilling fluid rheology. To achieve this, two fresh samples of mud were prepared and the rheological properties were analyzed at different temperature ranges representing the operating conditions of most Niger Delta wells. A mesh analysis was carried on dried fresh drill cuttings from the Anieze North Field and dried cuttings taken from the laboratory and two samples were selected at ASTM#40 and #18. 10 % of these cuttings samples were added to each mud sample and the rheological properties were measured at similar temperature ranges as the original mud samples. The results gotten shows that at the various temperature ranges, mud contamination with smaller drill cuttings size (ASTM #40=400um) showed a better performance than the larger particles. The mud rheological properties (viscosity, yield point, YP, plastic viscosity, PV and density) measured at different temperatures showed a remarkable non-linear behavior as shown in the results. KEY WORDS: Cuttings Size, Drill Cuttings, Mud Contamination, Mud Rheology, Temperature


2021 ◽  
Vol 9 (4) ◽  
pp. 105401
Author(s):  
Maimona Saeed ◽  
Noshin Ilyas ◽  
Muhammad Arshad ◽  
Muhammad Sheeraz ◽  
Iftikhar Ahmed ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


Sign in / Sign up

Export Citation Format

Share Document