scholarly journals Liquid-Cooling System of an Aircraft Compression Ignition Engine: A CFD Analysis

Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 71
Author(s):  
Alessandro Coclite ◽  
Maria Faruoli ◽  
Annarita Viggiano ◽  
Paolo Caso ◽  
Vinicio Magi

The present work deals with an analysis of the cooling system for a two-stroke aircraft engine with compression ignition. This analysis is carried out by means of a 3D finite-volume RANS equations solver with k- ϵ closure. Three different cooling system geometries are critically compared with a discussion on the capabilities and limitations of each technical solution. A first configuration of such a system is considered and analyzed by evaluating the pressure loss across the system as a function of the inlet mass-flow rate. Moreover, the velocity and vorticity patterns are analyzed to highlight the features of the flow structure. Thermal effects on the engine structure are also taken into account and the cooling system performance is assessed as a function of both the inlet mass-flow rate and the cylinder jackets temperatures. Then, by considering the main thermo-fluid dynamics features obtained in the case of the first configuration, two geometrical modifications are proposed to improve the efficiency of the system. As regards the first modification, the fluid intake is split in two manifolds by keeping the same total mass-flow rate. As regards the second configuration, a new single-inlet geometry is designed by inserting restrictions and enlargements within the cooling system to constrain the coolant flow through the cylinder jackets and by moving downstream the outflow section. It is shown that the second geometry modification achieves the best performances by improving the overall transferred heat of about 20% with respect to the first one, while keeping the three cylinders only slightly unevenly cooled. However, an increase of the flow characteristic loads occurs due to the geometrical restrictions and enlargements of the cooling system.

2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Hamisu A Dandajeh ◽  
Talib O Ahmadu

This paper presents an experimental investigation on the influence of engine speed on the combustion characteristics of a Gardener compression ignition engine fueled with rapeseed methyl esther (RME). The engine has a maximum power of 14.4 kW and maximum speed of 1500 rpm. The experiment was carried out at speeds of 750 and 1250 rpm under loads of 4, 8, 12, 16 and 18 kg. Variations of cylinder pressure with crank angle degrees and cylinder volume have been examined. It was found that RME demonstrated short ignition delay primarily due to its high cetane number and leaner fuel properties (equivalence ratio (φ) = 0.22 at 4kg). An increase in thermal efficiency but decrease in volumetric efficiency was recorded due to increased brake loads. Variations in fuel mass flow rate, air mass flow rate, exhaust gas temperatures and equivalence ratio with respect to brake mean effective pressure at engine speeds of 750 and 1250 rpm were also demonstrated in this paper. Higher engine speed of 1250 rpm resulted in higher fuel and air mass flow rates, exhaust temperature, brake power and equivalent ratio but lower volumetric efficiency. Keywords— combustion characteristics, engine performance, engine speed, rapeseed methyl Esther


2019 ◽  
Vol 179 (4) ◽  
pp. 52-57
Author(s):  
Michał GĘCA ◽  
Konrad PIETRYKOWSKI ◽  
Grzegorz BARAŃSKI

The article presents an analysis of the design of cooling liquid pumps for a compression-ignition aircraft engine. A 100 kW twin- charged, two-stroke, liquid-cooled engine has 3 cylinders and 6 opposed-pistons. In the first part of the study, the amount of heat needed to be removed by the cooling system was estimated to obtain the required volumetric flow rate. Then, the design of automotive cooling liquid pumps for compression-ignition engines with a Common Rail power supply system and power of about 100 kW was analyzed. The aim of the analysis was to select a suitable pump for applications in the aircraft compression-ignition engine. 5 constructions of different shape, diameter and width of the working rotor were selected. The pressure and volume flow rate were determined for a given rotational speed of the pump on a specially built stand. The operation maps of individual pumps were created to select the most efficient types of pumps.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3503
Author(s):  
Huang ◽  
Chen ◽  
Yang ◽  
Du ◽  
Yang

Adverse wind effects on the thermo-flow performances of air-cooled condensers (ACCs) can be effectively restrained by wind-proof devices, such as air deflectors. Based on a 2 × 300 MW coal-fired power generation unit, two types (plane and arc) of air deflectors were installed beneath the peripheral fans to improve the ACC’s cooling performance. With and without air deflectors, the air velocity, temperature, and pressure fields near the ACCs were simulated and analyzed in various windy conditions. The total air mass flow rate and unit back pressure were calculated and compared. The results show that, with the guidance of deflectors, reverse flows are obviously suppressed in the upwind condenser cells under windy conditions, which is conducive to an increased mass flow rate and heat dissipation and, subsequently, introduces a favorable thermo-flow performance of the cooling system. When the wind speed increases, the leading flow effect of the air deflectors improves, and improvements in the ACC’s performance in the wind directions of 45° and –45° are more satisfactory. However, hot plume recirculation may impede performance when the wind direction is 0°. For all cases, air deflectors in an arc shape are recommended to restrain the disadvantageous wind effects.


Author(s):  
B. Facchini ◽  
M. Surace ◽  
S. Zecchi

Significant improvements in gas turbine cooling technology are becoming harder as progress goes over and over. Several impingement cooling solutions have been extensively studied in past literature. An accurate and extensive numerical 1D simulation on a new concept of sequential impingement was performed, showing good results. Instead of having a single impingement plate, we used several perforated plates, connecting the inlet of each one with the outlet of the previous one. Main advantages are: absence of the negative interaction between transverse flow and last rows impinging jets (reduced deflection); better distribution of pressure losses and heat transfer coefficients among the different plates, especially when pressure drops are significant and available coolant mass flow rate is low (lean premixed combustion chamber and LP turbine stages). Practical applications can have a positive influence on both cooled nozzles and combustion chambers, in terms of increased cooling efficiency and coolant mass flow rate reduction. Calculated effects are used to analyze main influences of such a cooling system on global performances of power plants.


Author(s):  
Zhiwei Zhou ◽  
Yaoli Zhang ◽  
Yanning Yang

Containment is the ultimate barrier which protects the radioactive substance from spreading to the atmosphere. Sensitivity analysis on AP1000 containment during postulated design basis accidents (DBAs) was studied by a dedicated analysis code PCCSAP-3D. The code was a three-dimensional thermal-hydraulic program developed to analyze the transient response of the containment during DBAs; and it was validated at a certain extent. Peak pressure and temperature were the most important phenomena during DBAs. The parameters being studied for sensitivity analysis were break source mass flow rate, containment free space, surface area and volume of heat structures, heat capacity of the containment shell, film coverage, cooling water tank mass flow rate and initial conditions. The results showed that break mass flow rate as well as containment free space had the most significant impact on the peak pressure and temperature during DBAs.


Author(s):  
Xinran (William) Tao ◽  
John Wagner

Lithium-Ion (Li-ion) batteries are widely used in electric and hybrid electric vehicles for energy storage. However, a Li-ion battery’s lifespan and performance is reduced if it’s overheated during operation. To maintain the battery’s temperature below established thresholds, the heat generated during charge/discharge must be removed and this requires an effective cooling system. This paper introduces a battery thermal management system (BTMS) based on a dynamic thermal-electric model of a cylindrical battery. The heat generation rate estimated by this model helps to actively control the air mass flow rate. A nonlinear back-stepping controller and a linear optimal controller are developed to identify the ideal cooling air temperature which stabilizes the battery core temperature. The simulation of two different operating scenarios and three control strategies has been conducted. Simulation results indicate that the proposed controllers can stabilize the battery core temperature with peak tracking errors smaller than 2.4°C by regulating the cooling air temperature and mass flow rate. Overall the controllers developed for the battery thermal management system show improvements in both temperature tracking and cooling system power conservation, in comparison to the classical controller. The next step in this study is to integrate these elements into a holistic cooling configuration with AC system compressor control to minimize the cooling power consumption.


Author(s):  
Jingya Li ◽  
Xiaoying Zhang

The passive cooling system (PCCS) for reactor containment is a security system that can be used to cool the atmosphere and reduce pressure inside of containment in case of temperature and pressure increase caused by vapor injection, which requires no external power because it works only with natural forces. However, as the driving forces from natural physical phenomena are of low amplitude, uncertainties and instabilities in the physical process can cause failure of the system. This article aims to establish a CFD simulation model for the Passive Containment Cooling System of 1000MW PWR using Code_Saturne and FLUENT software. The comparison of 4 different models based respectively on mixture model, COPAIN test, Uchida correlation and Chilton-Colburn analogy which simulate the condensing effect and the improvement of source code are based on a 3D simulation of PCCS system. To simulate the thermal-hydraulic condition in the containment after LOCA accident caused by a double-ended main pipe rupture, a high temperature vapor with the given mass flow rate are supposed to be the source of energy and mass into containment. Meanwhile the surface of three condensing island applies the wall condensation model. The simulation results show similar transient process obtained with the 4 models, while the difference between the transient simulation and the steady-state analysis of three models is less than 3%. The large mass flow rate of water loss status inside the containment cause a high flow rate of vapor which could be uniformly mixed with air in a short time. For the self-condensing efficiency of 3 groups of PCCS system, the non-centrosymmetric injection position resulting that the condensing efficiency is slightly higher for the two heat exchanger groups nearby. During the first 2400s of simulation time, more than 75.69% of the vapor is condensed, indicating that for the occurrence of condensation at the wall mainly driven by natural convection, the effect of thermodynamic siphon could improve the flow of gas mixture inside the tubes when the velocity of mixture is not large enough, so that the vapor could smoothly enter the tube and reach the internal cooling surface then to be condensed. Besides, PCCS ensure the containment internal pressure maintained below 2 bar and the temperature maintained below 380K during 3600s.


Author(s):  
Mushtaq I. Hasan ◽  
Dhay Mohammed Muter

Usually, poultry houses are located in a remote area where there is no electricity, and where there is electricity, it is expensive, so resorting to these solutions is considered important solutions to save electrical energy and provide free cooling. The main part of generated energy is consumed by cooling and heating systems. One of the well-known approaches to implemented heating and cooling system is earth to air heat exchanger (EAHE) system. This system is effective passive heating and cooling systems which can be used with poultry houses and building. This research studies numerically the effect of mass flow rate on the overall performance of earth to air HE for poultry houses. Four parameters (mass flow rate, required rate, required cooling load and pipe lengths) are selected under environment of Nasiriyah city (a city located in the south of Iraq). The study is conducted using PVC material. The study has been done during summer season. The suggested numerical model has been tested and validated using existing approaches selected from literature review papers. This test shows good agreement with results of selected papers. Moreover, validation and simulation results showed that the required cooling load increased with increasing mass flow rate. Also, with the increasing length of pipe of EAHE, the inflow temperature compared to the space temperature is decreased. However, the overall performance factor of EAHEs decreases by the increase of length of pipe and mass flow rate. Which indicate the possibility of using the earth to air heat exchanger for cooling and heating poultry houses and reduce the use of electrical energy.


2020 ◽  
Vol 197 ◽  
pp. 06003
Author(s):  
Maria Faruoli ◽  
Annarita Viggiano ◽  
Paolo Caso ◽  
Vinicio Magi

It is well known that spark ignition internal combustion engines for aeronautical applications operate within a specific temperature range to avoid structural damages, detonations and loss of efficiency of the combustion process. An accurate assessment of the cooling system performance is a crucial aspect in order to guarantee broad operating conditions of the engine. In this framework, the use of a Conjugate Heat Transfer method is a proper choice, since it allows to estimate both the heat fluxes between the engine walls and the cooling air and the temperature distribution along the outer wall surfaces of the engine, and to perform parametric analyses by varying the engine operating conditions. In this work, the air-cooling system of a 4-cylinder spark ignition engine, designed by CMD Engine Company for aeronautical applications, is analysed in order to evaluate the amount of the air mass flow rate to guarantee the heat transfer under full load operating conditions. A preliminary validation of the model is performed by comparing the results with available experimental data. A parametric study is also performed to assess the influence of the controlling parameters on the cooling system efficiency. This study is carried out by varying the inlet air mass flow rate from 1.0 kg/s to 1.5 kg/s and the temperature of the inner wall surfaces of the engine combustion chambers from 390 K to 430 K.


Sign in / Sign up

Export Citation Format

Share Document