scholarly journals A Real Time Image Processing Bird Repellent System Using Raspberry Pi

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Oluwole Arowolo ◽  
Adefemi A Adekunle ◽  
Joshua A Ade-Omowaye

Rice is one of the most consumed foods in Nigeria, therefore it’s production should be on the high as to meet the demand for it. Unfortunately, the quantity of rice produced is being affected by pests such as birds on fields and sometimes in storage. Due to the activities of birds, an effective repellent system is required on rice fields. The proposed effective repellent system is made up of hardware components which are the raspberry pi for image processing, the servo motors for rotation of camera for better field of view controlled by Arduino connected to the raspberry pi, a speaker for generating predator sounds to scare birds away and software component consisting of python and Open Cv library for bird feature identification. The model was trained separately using haar features, HOG (Histogram of Oriented Gradients) and LBP (Local Binary Patterns).Haar features resulted in the highest accuracy of 76% while HOG and LBP were, 27% and 72% respectively. Haar trained model was tested with two recorded real time videos with birds, the false positives were fairly low, about 41%. This haar feature trained model can distinguish between birds and other moving objects unlike a motion detection system which detects all moving objects. This proposed system can be improved to have a higher accuracy with a larger data set of positive and negative images. Keywords—Electronic pest repeller Haar cascade classifier, ultrasonic

Road crashes are the most common forms of accidents and deaths worldwide, and the significant reasons for these accidents are usually drunken, drowsiness and reckless behaviour of the driver. According to the World Health Organization, road traffic injuries have risen to 1.25 billion worldwide, which makes driver drowsiness detection a major potential area to avert numerous sleep-induced road accidents. This project proposes an idea to detect drowsiness using machine learning algorithms, hence alarming the driver in real-time to prevent a collision. The model uses the Haar Cascade algorithm, along with the OpenCV library to monitor the real-time video of the driver and to detect the eyes of the driver. The system uses the Eye Aspect Ratio (EAR) concept to determine if the eyes are open or closed. We also feed a data-set file consisting of the facial features data-points to train the machine learning algorithm. The model inspects each frame of the video, which helps to recognize the state of the driver. Furthermore, a Raspberry Pi single-board computer, combined with a camera module and an alarm system, facilitates the project to emulate a compact drowsiness detection system suitable for different automobiles.


Author(s):  
Kadek Oki Sanjaya ◽  
Gede Indrawan ◽  
Kadek Yota Ernanda Aryanto

Object detection is a topic widely studied by the scientists as a special study in image processing. Although applications of this topic have been implemented, but basically this technology is not yet mature, futher research is needed to developed to obtain the desired result. The aim of the present study is to detect cigarette objects on video by using the Viola Jones method (Haar Cascade Classifier). This method known to have speed and high accuracy because of combining some concept (Haar features, integral image, Adaboost, and Cascade Classifier) to be a main method to detect objects. In this research, detection testing of cigarettes object is in samples of video with the resolution 160x120 pixels, 320x240 pixels, 640x480 pixels under condition of on 1 cigarette object and condition 2 cigarettes object. The result of this research indicated that percentage of average accuracy highest 93.3% at condition 1 cigarette object and 86,7% in the condition 2 cigarette object that was detected on the video with resolution 640x480 pixels, while the percentage of accuracy lowest 90% at condition 1cigarette object, and 81,7% at the condition 2 cigarette objects, detected on the video with the lowest resolution 160x120 pixels. The percentage of average errors at detection cigarettes object was inversely with percentage of accuracy. So that the detection system is able to better recognize the object of the cigarette, then the number of samples in the database needs to be improved and able to represent various types of cigarettes under various conditions and can be added new parameters related to cigarette object


Fruits which grow with high yield in many states of India are rich in proteins. But due to addition of excess pesticides and chemicals intake of these fruits lead to serious health problems. It is necessary to identify the presence of chemical in the fruits before consuming it. In this project we have planned to develop an image processing technique to analyze whether the fruit is free from chemicals and fungus. In our paper, we have implemented MATLAB used as well as fungus present in the fruit. We capture the images of the fruit or we use datasets and train the database with different color-based changes that happen after adding chemicals to the fruit. The enhancement process is carried out in the captured image. Then image is segmented to hit the regions with affected spots in the fruit. K-means method is used to carry out the segmentation process. The input image is compared with the given data set for training to identify the images. In this way unhealthy fruits can be identified and the affected spots in the fruit can be detected.


Author(s):  
Satryo B. Utomo ◽  
Januar Fery Irawan ◽  
Rizqi Renafasih Alinra

Early warning of floods is an essential part of disaster management. Various automatic detectors have been developed in flood mitigation, including cameras. But reliability and accuracy have not been improved. Besides, the use of monitoring devices has been employed to monitor water levels in various water building facilities. The early warning flood detector was carried out with a sensor camera using an orange ball that floats near the water level gauge in a bounding box. This approach uses the integration of computer vision and image processing, namely digital image processing techniques, with Sobel Canny edge detection (SCED) algorithms to detect quickly and accurately water levels in real-time. After the water level is measured, a flood detection process is carried out based on the specified water level. According to the results of experiments in the laboratory, it has been shown that the proposed approach can detect objects accurately and fast in real-time. Besides, from the water level detection experiment, good results were obtained. Therefore, the object detection system and water level can be used as an efficient and accurate early detection system for flood disasters.


Author(s):  
Mr. Shubham Ingole

This article describes the technique of real-time face detection, mask detection, and vacant seat available in the vehicle. There are so many technologies for finding seat availability in the vehicle. But image processing technology is very popular today. Face detection is part of image processing. It is used to find the face of a human being in a certain area. Face detection is used in many applications, such as facial recognition, people tracking or photography. In this paper, the face detection technique is used to detect the vacant seat availability in the vehicle and also to detect whether the passenger wear the mask on his face or not. The webcam is installed in the vehicle and connected with the Raspberry Pi 3 model B. When the vehicle leaves the station, the webcam will capture images of the passengers in the seating area. The webcam will be mounted on the vehicle. The images will be adjusted and enhanced to reduce noise made by the software application. The system obtains the maximum number of passengers in the vehicle that processes the images and then calculates the availability of seats in the vehicle. In covid-19 situation mask detection is necessary. so this system also used to detect the mask on face.


2018 ◽  
Vol 7 (4) ◽  
pp. 223
Author(s):  
Fars E. Samann

Detecting the level of the liquid is very essential for any chemical study in research labs. The objective of this paper is to design real-time liquid level detection system using image processing. Besides, this system is able to indicate the color of the liquid during chemical reaction. The proposed system was developed using vision assistant tools in LabVIEW and webcam. Regarding to webcam resolution, the average accuracy of the system is approximately 99%.


India is an agricultural country. A total of 61.5% of the people cultivate in India. Due to lack of agricultural land and change of weather, manytypes of diseases occur on crops and insects are born.Therefore, the production of crops is coming down. To reduce this problem, Internet of Things technology will prove to be an important role. In this system, a sensor network will be created on agricultural land using Raspberry Pi 3 model. The images of the crops will be taken by sensor cameras and these images will be sent to the cloud server via Raspberry Pi 3 model. In this proposed methodology, various image processing techniques willbe apply on acquired images for classification of crop diseases using k-means clustering algorithm with unsupervised machine learning. This paper will also shows the method of image processing technique such as image acquisition, image pre-processing, image segmentation and feature extraction for classification of crop diseases.In bad natural environment, the farmers can produce quality crops and people will get healthy foodby this proposed methodologyand make more profit.In real time treatme


Sign in / Sign up

Export Citation Format

Share Document