scholarly journals Effects of Abattoir Effluents on Heavy Metal Tolerance, Bacteriological Quality and Physicochemical Parameters of Contaminated Soil in Yola, Adamawa State, Nigeria

2021 ◽  
Vol 4 (1) ◽  
pp. 11-27
Author(s):  
MI Ja’afaru ◽  
OM Adeyemo ◽  
CH Okafor ◽  
P Bristone

This study was carried out to evaluate the effect of effluent produced from Yola abattoir on the heavy metals, the physicochemical parameters and the bacteriological quality of the contaminated soil. Stratified sampling technique was used to collect soil samples from the abattoir environment. Isolation of bacteria, cultural and biochemical characteristics were assessed using pour-plate and conventional techniques. Heavy metals presence was determined using atomic absorption spectrophotometer (AAS). Heavy metal tolerance by bacteria was done by agar plate method. The molecular identification was carried out using 16S rRNA gene of the bacteria. All data obtained were subjected to statistical analyses using analysis of variance (ANOVA) and t-test. Total bacterial count ranged from 6.19 x 105 and 8.50 x 105 CFU/mL. Bacterial species of Pseudomonas, Klebsiella, Staphylococcus, Bacillus, Streptococcus, Staphylococcus and Escherichia coli were isolated and identified. The highest mean value of the physicochemical parameters for pH, organic carbon, total nitrogen content, water holding capacity, total solid and total suspended solid of the effluent contaminated soil were 7.03, 7.97 %, 13.76 %, 2.48 %, 3346 g/cm, 1263 mg/L and 872 mg/L respectively. The minimum tolerance concentration of 50 ppm for copper, iron, zinc and cobalt was observed with a bacterium identified to be a strain of Pseudomonas aeruginosa. The isolated and identified Pseudomonas aeruginosa HBS2 strain has the potential to be used in bioremediation.

2020 ◽  
Vol 12 (1) ◽  
pp. 101-112
Author(s):  
José Luis Aguirre-Noyola ◽  
Yaneth Romero Ramírez ◽  
Jesus Carlos Ruvalcaba Ledezma ◽  
Angela Victoria Forero Forero ◽  
Renato León Rodríguez ◽  
...  

Contextualization: Pseudomonas aeruginosa is capable of producing biosurfactants which have many uses in bioremediation and the production of antiviral, antibacterial, antiparasitic, sporicidal and antifungal agents, among others.   Knowledge gap: This study describes the production of mono and di-rhamnolipid biosurfactants by P. aeruginosa strains isolated from Zea mays rhizosphere and composts in the state of Guerrero, Mexico.  Purpose: The overall aims were to investigate biosurfactant, pyocyanin production, and tolerance to heavy metals and antimicrobial activity capacity than biosurfactants produced from P. aeruginosa strains from corn rhizosphere and compost in Mexico. Methodology: Biosurfactant production was determined based hemolysis on blood agar, blue halos in CTAB-Methylene blue agar, drop collapse test and production of foam on PPGAS broth, the emulsion index (IE24) and antibacterial capacity. The strains were identified by sequence of the 16S rDNA gene and their resistance to heavy metals were also evaluated. Results and conclusions: Two strains isolated from Zea mays rhizosphere (PAM8, PAM9) were the best biosurfactant producers and their extracts showed antimicrobial activity against Grampositive and Gramnegative bacteria. PAM8 and PAM9 showed >30% of cellular hydrophobicity to hydrocarbons, and were capable of emulsifying toluene, cyclohexane, petroleum, diesel and oils. All strains showed the same profile of heavy metal tolerance (As5+ >As3+ >Zn2+ >Pb2+ >Fe3+ >Cd2+ >Cu2+ >Cr6+ in concentrations of 20, 10, 10, 6, 4, 4, 2 and 2 mM., respectively). The isolation of biosurfactant-producing and heavy-metal tolerant bacteria from Zea mays rhizosphere and compost in Guerrero demonstrates the capacity for this region to harbor potentially important microbial strains for industrial or bioremediation applications.


2012 ◽  
Vol 30 (1) ◽  
pp. 58 ◽  
Author(s):  
M. P. Krishna ◽  
Rinoy Varghese ◽  
A. A. Mohamed Hatha

The development of multiple metal/antibiotic resistances among the bacterial population causes a potential risk to human health. Metal contamination in natural environments could have an important role in the maintenance and proliferation of antibiotic resistance. In the present study, a total of 46 heterotrophic bacterial isolates from metal contaminated soil were tested for their sensitivity to 10 widely used antibiotics such as ampicillin, erythromycin, gentamicin, nalidixic acid, penicillin, amikacin, lincomycin, novobiocin, vancomycin and tetracycline. Metal tolerant ability of these isolates against five heavy metals such as lead, zinc, copper, cadmium and nickel were also determined. The results revealed that most of the bacterial isolates were resistant to one or more heavy metals/ antibiotics against which they are tested. Tolerance to heavy metal showed the following pattern; lead > zinc > nickel > copper > cadmium. Resistance to ampicillin (73.91%), penicillin (60.8%), lincomycin (43.47%) and nalidixic acid (21.73%) were encountered frequently. None of the isolates were resistant to amikacin, while resistance to gentamicin and tetracycline were low (2.17%). Out of the 46 bacterial isolates, 36 isolates showed multiple metal and antibiotic resistances. Isolate LOC 10 showed significantly high tolerance (100-300�g/mL) to all the metals and was resistant to 6 antibiotics.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 533
Author(s):  
Mautusi Mitra ◽  
Kevin Manoap-Anh-Khoa Nguyen ◽  
Taylor Wayland Box ◽  
Taylor Lynne Berry ◽  
Megumi Fujita

Background: Chlamydomonas reinhardtii, a green micro-alga, is normally cultured in laboratories in Tris-Acetate Phosphate (TAP), a medium which contains acetate as the sole carbon source. Acetate in TAP can lead to occasional bacterial and fungal contamination. We isolated a yellow-pigmented bacterium from a Chlamydomonas TAP plate. It was named Clip185 based on the Chlamydomonas strain plate it was isolated from. In this article we present our work on the isolation, taxonomic identification and physiological and biochemical characterizations of Clip185. Methods: We measured sensitivities of Clip185 to five antibiotics and performed standard microbiological tests to characterize it. We partially sequenced the 16S rRNA gene of Clip185. We identified the yellow pigment of Clip185 by spectrophotometric analyses. We tested tolerance of Clip185 to six heavy metals by monitoring its growth on Lysogeny Broth (LB) media plates containing 0.5 mM -10 mM concentrations of six different heavy metals. Results: Clip185 is an aerobic, gram-positive rod, oxidase-negative, mesophilic, alpha-hemolytic bacterium. It can ferment glucose, sucrose and mannitol. It is starch hydrolysis-positive. It is very sensitive to vancomycin but resistant to penicillin and other bacterial cell membrane- and protein synthesis-disrupting antibiotics. Clip185 produces a C50 carotenoid, decaprenoxanthin, which is a powerful anti-oxidant with a commercial demand. Decaprenoxanthin production is induced in Clip185 under light. NCBI-BLAST analyses of the partial 16S rRNA gene sequence of Clip185 revealed a 99% sequence identity to that of Microbacterium binotii strain PK1-12M and Microbacterium sp. strain MDP6. Clip185 is able to tolerate toxic concentrations of six heavy metals. Conclusions: Our results show that Clip185 belongs to the genus Microbacterium. In the future, whole genome sequencing of Clip185 will clarify if Clip185 is a new Microbacterium species or a novel strain of Microbacterium binotii, and will reveal its genes involved in antibiotic-resistance, heavy-metal tolerance and regulation of decaprenoxanthin biosynthesis.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 533
Author(s):  
Mautusi Mitra ◽  
Kevin Manoap-Anh-Khoa Nguyen ◽  
Taylor Wayland Box ◽  
Taylor Lynne Berry ◽  
Megumi Fujita

Background: Chlamydomonas reinhardtii, a green micro-alga, is normally cultured in laboratories in Tris-Acetate Phosphate (TAP), a medium which contains acetate as the sole carbon source. Acetate in TAP can lead to occasional bacterial and fungal contamination. We isolated a yellow-pigmented bacterium from a Chlamydomonas TAP plate. It was named Clip185 based on the Chlamydomonas strain plate it was isolated from. In this article we present our work on the isolation, taxonomic identification and physiological and biochemical characterizations of Clip185. Methods: We measured sensitivities of Clip185 to five antibiotics and performed standard microbiological tests to characterize it. We partially sequenced the 16S rRNA gene of Clip185. We identified the yellow pigment of Clip185 by spectrophotometric analyses. We tested tolerance of Clip185 to six heavy metals by monitoring its growth on Lysogeny Broth (LB) media plates containing 0.5 mM -10 mM concentrations of six different heavy metals. Results: Clip185 is an aerobic, gram-positive rod, oxidase-negative, mesophilic, alpha-hemolytic bacterium. It can ferment glucose, sucrose and mannitol. It is starch hydrolysis-positive. It is very sensitive to vancomycin but resistant to penicillin and other bacterial cell membrane- and protein synthesis-disrupting antibiotics. Clip185 produces a C50 carotenoid, decaprenoxanthin, which is a powerful anti-oxidant with a commercial demand. Decaprenoxanthin production is induced in Clip185 under light. NCBI-BLAST analyses of the partial 16S rRNA gene sequence of Clip185 revealed a 99% sequence identity to that of Microbacterium binotii strain PK1-12M and Microbacterium sp. strain MDP6. Clip185 is able to tolerate toxic concentrations of six heavy metals. Conclusions: Our results show that Clip185 belongs to the genus Microbacterium. In the future, whole genome sequencing of Clip185 will clarify if Clip185 is a new Microbacterium species or a novel strain of Microbacterium binotii, and will reveal its genes involved in antibiotic-resistance, heavy-metal tolerance and regulation of decaprenoxanthin biosynthesis.


2009 ◽  
Vol 3 (2) ◽  
pp. 48-64
Author(s):  
Kadhim M. Ibrahim ◽  
Shaimaa A. Yousir

Several experiments were carried out to study heavy metal tolerance in tissue cultures or whole plants of S. grandiflora., Callus was induced and maintained on modified Murashige and Skoog, 1962 medium (MS) supplemented with (0.5)mg/l benzyl adenine and (2)mg/l 2,4-phenoxy acetic acid . Heavy metals (Cd, Co, Cu, Cr or Zn) were added to the culture medium at different concentrations as contamination agents. In order to asses the effect of these heavy metals on seed germination; seeds were sown in soil contaminated with different concentrations of heavy metals for 3 weeks. Atomic Absorption Spectrophotometer was used for analysis of samples taken from whole plants and callus cultures. Results showed that callus fresh weight decreased with increasing heavy metal concentration in cultural medium. Germination percentages and plant heights increased over time. However, a reduction occurred in these parameters with increasing heavy metal levels. Percentages of metals accumulated in calli were (0.001, 0.011, 0.012 and 0.013%) at (0.0, 0.05, 0.075 and 0.1)mg/l Cd respectively; (0.001, 0.008, 0.016 and 0.006%) at (0.0, 0.1, 0.25 and 0.5)mg/l Co respectively; (0.001, 0.020, 0.034 and 0.015%) at (0.0, 0.075, 0.2 and 0.5)mg/l Cu respectively; (0.001, 0.013, 0.012 and 0.010%) at (0.0, 0.25, 0.4 and 0.5)mg/l Cr respectively and (0.027, 0.051, 0.059 and 0.056%) at (0.0 , 0.75, 1.0 and 1.5)mg/l Zn respectively. Percentages of metals accumulated in whole plants were (0.08, 0.55, 1.11, 0.83 and 0.44%) at (0.0, 1.0, 2.0, 3.0 and 4.0)mg/Kg soil Cd respectively; (0.11, 0.22, 0.55, 0.47 and 0.44%) at (0.0, 15.0, 30.0 45.0 and 60.0)mg/Kg soil Co respectively; (0.01, 0.10, 0.57, 0.58 and 0.72%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cu respectively. (0.08, 0.80, 1.28, 1.31 and 0.88%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cr respectively and (0.06, 1.11, 1.20, 1.83 and 2.22%) at (0.0, 100.0, 200.0, 300.0 and 400.0)mg/Kg soil Zn respectively.


Author(s):  
Muibat Fashola

Introduction: Indiscriminate dumping of spent oils enriched with heavy metals has led to increase in heavy metals load in the soil. Heavy metals exert toxic effects on biodegradation of organic pollutant in cocontaminated soil and there is need to find suitable strategies for their removal. Aim: The aim of this study was to assess the heavy metals resistance capability of indigenous Bacillus species in hydrocarbon polluted soil to nickel (Ni), Cadmium (Cd), Lead (Pb) and Chromium (Cr). Materials and Methods: Heavy metal tolerant bacteria were isolated from hydrocarbon polluted soil using Luria-Berthani agar supplemented with the respective metals and spread plate techniques. The isolates were putatively identified on the basis of their colonial morphology and biochemical characteristics and their antibiotics susceptibility pattern were evaluated using disc diffusion method. Results: The maximum tolerable concentration (MTC) of the four heavy metals to the selected isolates was 2 mM. Four bacteria isolates able to withstand the MTC were putatively identified as Bacillus subtilis, Bacillus megaterium, Bacillus laterosporus and Bacillus polymyxa. Out of the four Bacillus species, only B. laterosporus did not show multiple tolerance to the tested antibiotics which show that there is correlation between heavy metal tolerance and antibiotics resistance by the isolates. Conclusion: Multiple heavy metal tolerance Bacillus spp. were isolated from crude oil polluted soil. These bacteria could be suitable agents for bioaugmentation of hydrocarbon polluted soil co-contaminated with heavy metals.


Biologia ◽  
2012 ◽  
Vol 67 (5) ◽  
Author(s):  
Kamala Gupta ◽  
Chitrita Chatterjee ◽  
Bhaskar Gupta

AbstractThe present study was conducted to determine the culturable bacterial profile from Kestopur canal (Kolkata, India) and analyze their heavy metal tolerance. In addition to daily sewage including solid and soluble wastes, a considerable load of toxic metals are released into this water body from industries, tanneries and agriculture, household as well as health sectors. Screening out microbes from such an environment was done keeping in mind their multifunctional application especially for bioremediation. Heavy metals are major environmental pollutants when present in high concentration in soil and show potential toxic effects on growth and development in plants and animals. Some edible herbs growing in the canal vicinity, and consumed by people, were found to harbour these heavy metals at sub-toxic levels. The bioconcentration factor of these plants being <1 indicates that they probably only absorb but not accumulate heavy metals. All the thirteen Grampositive bacteria isolated from these plants rhizosphere were found to tolerate high concentration of heavy metals like Co, Ni, Pb, Cr, Fe. Phylogenetic analysis of their 16S rDNA genes revealed that they belonged to one main taxonomic group — the Firmicutes. Seven of them were found to be novel with 92–95% sequence homology with known bacterial strains. Further microbiological analyses show that the alkaliphilic Bacillus weihenstephanensis strain IA1 and Exiguobacterium aestuarii strain CE1, with selective antibiotic sensitivity along with high Ni2+ and Cr6+ removal capabilities, respectively, can be prospective candidates for bioremediation.


Heavy metals are the most important pollutants that are non-biodegradable and increasingly accumulate in the environment. Phytoremediation can be defined as the use of plants for the extraction, immobilization, containment, or degradation of contaminants. It provides an ecologically, environmentally sound and safe method for restoration and remediation of contaminated land. Plant species vary in their capacity of hyper-accumulation of heavy metals. The chapter reviews the current findings on the molecular mechanism involved in heavy metals tolerance, which is a valuable tool for phytoremediation. The heavy metal tolerance genes help in the hyper-accumulation trait of a plant. Heavy metal transporter ATPases (HMAs) genes help in the refluxing of heavy metal ions from the cytosol, either into the apoplast, the vacuole, or other organelles, which help in the hyperaccumulation of metal. Understanding the signaling mechanism of transporter genes will be an important tool to understand the genetics of hyperaccumulation.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 896 ◽  
Author(s):  
Shafaqat Ali ◽  
Zohaib Abbas ◽  
Mahmoud F. Seleiman ◽  
Muhammad Rizwan ◽  
İlkay YAVAŞ ◽  
...  

Unexpected biomagnifications and bioaccumulation of heavy metals (HMs) in the surrounding environment has become a predicament for all living organisms together with plants. Excessive release of HMs from industrial discharge and other anthropogenic activities has threatened sustainable agricultural practices and limited the overall profitable yield of different plants species. Heavy metals at toxic levels interact with cellular molecules, leading towards the unnecessary generation of reactive oxygen species (ROS), restricting productivity and growth of the plants. The application of various osmoprotectants is a renowned approach to mitigate the harmful effects of HMs on plants. In this review, the effective role of glycine betaine (GB) in alleviation of HM stress is summarized. Glycine betaine is very important osmoregulator, and its level varies considerably among different plants. Application of GB on plants under HMs stress successfully improves growth, photosynthesis, antioxidant enzymes activities, nutrients uptake, and minimizes excessive heavy metal uptake and oxidative stress. Moreover, GB activates the adjustment of glutathione reductase (GR), ascorbic acid (AsA) and glutathione (GSH) contents in plants under HM stress. Excessive accumulation of GB through the utilization of a genetic engineering approach can successfully enhance tolerance against stress, which is considered an important feature that needs to be investigated in depth.


2015 ◽  
Vol 1130 ◽  
pp. 263-267 ◽  
Author(s):  
Hee Chan Jang ◽  
Marjorie Valix

In this study, the adaptation of A. thiooxidans to heavy metals leached from saprolitic Ni laterite ores was performed by gradual acclimatisation. The bacteria was cultivated in heavy metals (Ni, Co, Fe, Mg, Cr and Mn) with total concentrations of 2400 to 24000 ppm equivalent to total dissolution of 1 to 10% (w/v) pulp densities of the saprolitic Ni laterite ore. Adaptation evolution mapped from its tolerance index was found to be dependent on metal concentration, acid generation, and period of adaptation. Bio-stimulation of cell growth and acid production was promoted by heavy metal stress on the bacteria. Pre-established heavy metal tolerance of the bacteria improved the leaching rate in its early phase; 20% and 7% increase in Ni and Co metal recoveries were observed in using adapted bacteria. However heavy metal tolerance was also achieved by the bacteria during the leaching process, albeit delayed by a lag phase. These results confirm the robust nature and suitability of A. thiooxidans in direct biomining of Ni ores.


Sign in / Sign up

Export Citation Format

Share Document