scholarly journals Advanced treatment of waste water using microalgae in and around the region of Gengavalli

2020 ◽  
Vol 1 (1) ◽  
pp. 6-11
Author(s):  
Dr. P. Vijaya Kumar ◽  
Dr. S. Ananthakrishnan

The present study illustrates the efficiency of microalgae based treatment system. Treatment of wastewater with microalgae based system have the ability of remove the nutrients( nitrogen , phosphorus and other nutrients ) , heavy metals ,toxic substance (both organic and inorganic) , BOD ,COD and other impurities present in the waste water by using the sunlight, co2 and impurities like nutrients present in the wastewater. The microalgae also have the ability of the fix the excess carbon dioxide present in the environment and release the oxygen and solve the problem of global warming .According to the various study the nutrients removal efficiency of  78- 99% of nitrogen and phosphorus the treatment system also succeed to removal of the 40-65%of COD , BOD and other impurities present in wastewater.  The organic and inorganic substance released into the environment as a result of domestic, agricultural and industrial wastewater. The normal primary & secondary treatment process are involved in the treatment. Present investigation focuses on the bioremediation of waste water using microalgae.

2019 ◽  
pp. 183-189
Author(s):  
Lijana Augulyte ◽  
Per-Anders Bergqvist ◽  
Audrone Zaliauskiene

One major result of implementing the Water Frame Directive (WFD) for the water industry is the likelihood of more stringent requirements for the efficiency of removal of the pollutants included in the list of WFD priority substances. During the last decade, an ongoing debate on the technical aspects of water treatment and on the fate and effects of its constituents after discharge are taking place. Due to the recent development of analytical techniques, the knowledge about the chemistry and toxicology of the waste water has increased considerable. Characterization of the oil treatment efficiency by total petroleum hydrocarbon concentration (TPH) is not sufficient any more. Waste water before and after treatment should be characterized by toxicity and amounts of the individual compounds and mixtures which trigger the toxicity. In the situations where more efficient oil removal from waste water is required to meet the requirements, there are a number of treatment options available, including some tertiary ("polishing") treatment systems. New generation tertiary wastewater treatment system for removal or reducing of the oil compounds, including dissolved polycyclic aromatic hydrocarbons, bearing along most toxic potential, was developed under a Eureka funded project. The new waste water treatment system involves novel monitoring device to verify that the dissolved and bioavailable fraction of the contaminants are degraded, and that the final effluent is cleaner also from a toxicity point of view. Previous studies showed that more toxic compounds might be produced during the treatment process due to the transformation of the original chemicals. The monitoring device consists of a membrane-based diffusive, time integrative (2-30 days) sampler. The newly developed fast analytical method for the analysis of membrane extracts enable to give us information on the dissolved concentrations for more than 80 oil related compounds in the effluents as well as the toxicity results, by using standard bio-assay tests. Moreover the monitoring system is capable to accurately sample most of the WFD priority substances in waste water treatment effluent waters. lt was found that some of the compounds were effectively removed in waste water treatment plant (WWTP), but other compounds remained in the dissolved phase at the same concentrations. Furthermore, volatilization of low molecular weight PAHs during the treatment process was studied by means of the new monitoring system, resulting in the identification of significant release of WFD pollutants to the air. The changes in time-integrative toxicity during the treatment process were evaluated by standard ecotoxicity analysis using the same membrane extracts. The three bio-assays used were Daphnia magna, Microtox and Algal but also other organism- or cell test systems will be tested further. Our developed monitoring device is the state-of-art method for screening for environmental toxicity by integrating biologically and chemically based techniques for early warning and ecosystem health assessment purposes. It can provide invaluable information in highly polluted environments where bioindicator organisms would not survive or behave normally.


1995 ◽  
Vol 31 (10) ◽  
pp. 103-121
Author(s):  
J.-O. Frier ◽  
J. From ◽  
T. Larsen ◽  
G. Rasmussen

The aim of waste modelling in aquaculture is to provide tools for simulating input, transformation, output and subsidiary degradation in recipients of organic compounds, nitrogen, and phosphorus. The direct purpose of this modelling is to make it possible for caretakers and water authorities to calculate waste discharge from existing and planned aquaculture activities. A special purpose is simulating outcome of waste water treatment and altered feeding programmes. Different submodels must be applied for P, N, and organics, as well as for the different phases of food and waste treatment. Altogether this calls for an array of co-operating submodels for a sufficient coverage of the options. In all the required fields there is some scientific background for numerical model approaches, and some submodels have been proposed. Because of its multidisciplinary character a synthesized approach is still lacking. Within trout farming this work attempts to establish the different submodels and outlines future possibilities for synthesizing the knowledge to a numerical model.


1996 ◽  
Vol 33 (12) ◽  
pp. 251-254
Author(s):  
Karl Arno Bäumer ◽  
Angela Baumann

The Institute for Water and Waste Management (ISA) at the Aachen University of Technology (RWTH) verified, through semi-technical analysis, the efficiency of the planned upgrade of the Kleve-Salmorth waste water treatment plant. Additionally the allowable biological phosphorus removal limit and the scheduled simultaneous precipitation were also ascertained.


Author(s):  
Ibon Alkorta ◽  
José Elguero

AbstractThis communication gives an overview of the relationships between four reactions that although related were not always perceived as such: SN2, Walden, Finkelstein, and Menshutkin. Binary interactions (SN2 & Walden, SN2 & Menshutkin, SN2 & Finkelstein, Walden & Menshutkin, Walden & Finkelstein, Menshutkin & Finkelstein) were reported. Carbon, silicon, nitrogen, and phosphorus as central atoms and fluorides, chlorides, bromides, and iodides as lateral atoms were considered. Theoretical calculations provide Gibbs free energies that were analyzed with linear models to obtain the halide contributions. The M06-2x DFT computational method and the 6-311++G(d,p) basis set have been used for all atoms except for iodine where the effective core potential def2-TZVP basis set was used. Concerning the central atom pairs, carbon/silicon vs. nitrogen/phosphorus, we reported here for the first time that the effect of valence expansion was known for Si but not for P. Concerning the lateral halogen atoms, some empirical models including the interaction between F and I as entering and leaving groups explain the Gibbs free energies.


Sign in / Sign up

Export Citation Format

Share Document