scholarly journals The SN2 reaction and its relationship with the Walden inversion, the Finkelstein and Menshutkin reactions together with theoretical calculations for the Finkelstein reaction

Author(s):  
Ibon Alkorta ◽  
José Elguero

AbstractThis communication gives an overview of the relationships between four reactions that although related were not always perceived as such: SN2, Walden, Finkelstein, and Menshutkin. Binary interactions (SN2 & Walden, SN2 & Menshutkin, SN2 & Finkelstein, Walden & Menshutkin, Walden & Finkelstein, Menshutkin & Finkelstein) were reported. Carbon, silicon, nitrogen, and phosphorus as central atoms and fluorides, chlorides, bromides, and iodides as lateral atoms were considered. Theoretical calculations provide Gibbs free energies that were analyzed with linear models to obtain the halide contributions. The M06-2x DFT computational method and the 6-311++G(d,p) basis set have been used for all atoms except for iodine where the effective core potential def2-TZVP basis set was used. Concerning the central atom pairs, carbon/silicon vs. nitrogen/phosphorus, we reported here for the first time that the effect of valence expansion was known for Si but not for P. Concerning the lateral halogen atoms, some empirical models including the interaction between F and I as entering and leaving groups explain the Gibbs free energies.

2019 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Esteban Vöhringer-Martinez

In molecular modeling the description of the interactions between molecules forms the basis for a correct prediction of macroscopic observables. Here, we derive atomic charges from the implicitly polarized electron density of eleven molecules in the SAMPL6 challenge using the Hirshfeld-I and Minimal Basis Set Iterative Stockholder(MBIS) partitioning method. These atomic charges combined with other parameters in the GAFF force field and different water/octanol models were then used in alchemical free energy calculations to obtain hydration and solvation free energies, which after correction for the polarization cost, result in the blind prediction of the partition coefficient. From the tested partitioning methods and water models the S-MBIS atomic charges with the TIP3P water model presented the smallest deviation from the experiment. Conformational dependence of the free energies and the energetic cost associated with the polarization of the electron density are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


2005 ◽  
Vol 60 (1-2) ◽  
pp. 47-53
Author(s):  
Bareehan M. Salim ◽  
Salim M. Khalil

MINDO-Forces calculations with complete geometry optimization have been performed on nitromethane, aci-nitromethane and X-substituted nitromethane and aci-nitromethane (X = F, OH, NH2, CH3, CN, CF3, NO2, CHO). It is found that nitromethane is more stable than aci-nitromethane by 9.337 kcal/mol. This agrees with theoretical calculations. Thermodynamically, substituted aci-nitro tautomers are more stable than the corresponding nitromethane, except in case of the substituent F. Geometrical parameters, heats of formation, electron densities, Gibbs free energies and isodesmic reactions are reported.


2013 ◽  
Vol 742 ◽  
pp. 272-277
Author(s):  
Liang Shan Feng ◽  
Zhan Xiang Sun ◽  
Jia Ming Zheng

In this study, the results showed that water is the most important factor to affect crop yields and optimum soil moisture is lower under the conditions of peanut-and-millet interplanting. Thus, peanut-and-millet interplanting is generally able to fit most of the semi-arid region. In the interaction of various factors, the coupling effect of water and phosphorus was stronger than the coupling effect of fertilizers, following by the coupling effect of water and nitrogen. Among peanuts factors of water, nitrogen, and multi-factorial interaction of water, nitrogen, and phosphorus, water and nitrogen showed a negative effect, whereas the two-factor interactions had a positive effect. There were some differences between peanut and millet in the need for water and fertilizer, in which peanut required more nitrogen and millet needed slightly higher soil moisture and phosphorus. When other factors were in rich level, both of the optimal value for single factors of water, nitrogen, and phosphorus and the optimal value for two-factor interactions of water-nitrogen, water-phosphorus, and nitrogen-phosphorus, were higher than the optimal value for the interaction of water, nitrogen, and phosphorus. The tiny demand difference on moisture in peanut-millet interplanting could be compromised by configuring a reasonable interplanting population structure and the corresponding demand difference on fertilizer could be resolved by uneven crop planting strips. Under the condition of water-nitrogen-phosphorus interaction, the soil moisture content optimal for peanut accounted for 57.3% of the field capacity, and the related appropriate application rates of nitrogen and phosphorus were 0.98 g/pot (81.18 kg/hm2) and 0.39g/pot (32.18 kg/hm2), respectively. Likewise, the soil moisture content optimal for millet was 59.1% of the field capacity, and the counterpart appropriate application rates of nitrogen and phosphorus were 0.57 g/pot (47.03 kg/hm2) and 0.45g / pot (37.13 kg/hm2), respectively.


2008 ◽  
Vol 86 (4) ◽  
pp. 298-304 ◽  
Author(s):  
Erwin Buncel ◽  
Sam-Rok Keum ◽  
Srinivasan Rajagopal ◽  
Eric Kiepek ◽  
Robin A Cox

Extension of our studies of the generic Wallach rearrangement (of azoxybenzene to 4-hydroxyazobenzene) to the heteroaromatic series (azoxypyridines and axoxypyridine N-oxides) has revealed some dramatic reactivity differences, particularly for the α and β compounds. We have studied the 3-isomers and the 4-isomers in each series, each with α and β forms, eight compounds in all, in the 100 wt% sulfuric acid region of acidity. In those cases in which a product could be observed, the α and β isomers both give the same one, the corresponding 4′-hydroxyazo compounds. All the compounds react much more slowly than does azoxybenzene itself, presumably because of the extra positive charge present in the substrates, but the β isomers have half-lives of seconds and the α isomers half-lives of hundreds of hours in the 100 wt% H2SO4 acidity region. The α compounds have measurable pKBH+ values, but the β compounds do not, exhibiting only a medium effect in the acidity region in which the α compounds protonate. This means that for the β compounds, the protonated intermediates must be much less stable and the postulated reaction intermediates must be much more stable than for the α compounds. To clarify this, we have obtained Mulliken charge distributions for the various species concerned, calculating the charge carried by each half of the molecule, larger charge separations being taken to indicate lesser stability. As far as we can establish, this is the first time that this technique has been used to indicate the stabilities of carbocationic species.Key words: azoxypyridines, azoxypyridine N-oxides, Wallach rearrangement, excess acidity, basicities, theoretical calculations, charge distributions, reactivities.


1970 ◽  
Vol 48 (14) ◽  
pp. 1664-1674 ◽  
Author(s):  
D. W. Lepard

This paper presents a method for calculating the relative intensities and Raman shifts of the rotational structure in electronic Raman spectra of diatomic molecules. The method is exact in the sense that the wave functions used for the calculations may belong to any intermediate case of Hund's coupling schemes. Using this method, theoretical calculations of the pure rotational and electronic Raman spectrum of NO, and the pure rotational Raman spectrum of O2, are presented. Although a calculated stick spectrum for NO was previously shown by Fast et al., the details of this calculation are given here for the first time.


1986 ◽  
Vol 34 (6) ◽  
pp. 709 ◽  
Author(s):  
RH Groves ◽  
PJ Hocking ◽  
A Mcmahon

The heathland form of Banksia marginata Cav. regenerates rarely from seed but commonly by resprout- ing from buds on lateral roots, whereas Banksia ornata F. Muell. regenerates only from seed, usually released after fire. The two species co-occur in heath vegetation on nutrient-poor soils in south-eastern South Australia and western Victoria. Shoots were sampled from stands of B. marginata aged from 1 to 25 years and of B. ornata aged from 1 to 50+ years after fire in the Little Desert National Park, western Victoria. B. marginata, the resprouter, distributed a greater proportion of the total shoot dry matter and content of all nutrients to vegetative growth over its shorter life span than B. ornata, the non-sprouter. About 50% of the total phosphorus in B. ornata shoots at 50+ years was present in cones (including seeds) compared with only about 20% in B. marginata shoots at a comparable stage of senescence (25 years). This difference between the species was also true to a lesser degree for nitrogen. There were considerable differences between other nutrients in their distribution patterns in shoots. Nutrients could be grouped together on the basis of distribution in shoots more satisfactorily than on presumed physio- logical roles. Stems were major sites of nutrient accumulation in both species. The content of a particular nutrient in seeds as a proportion of the content in the living parts of the shoot ranged from 0.03% (Na, Mn) to 2.0% (P) in B. marginata, and from 0.3% (Na) to as high as 31% (P) in B. ornata. Concen- trations of all nutrients except sodium were much higher in seeds than in the woody cones or vegetative organs of both species; seeds of B. ornata were particularly rich in calcium and manganese. We conclude that the different patterns of distribution of biomass and nutrients, especially nitrogen and phosphorus, within shoots of the two species reflect their different regenerative modes after fire. Introduction Phosphorus and, to a lesser extent, nitrogen limit the growth of sclerophyllous shrubs on nutrient-poor soils in southern Australia


2002 ◽  
Vol 2 ◽  
pp. 455-460 ◽  
Author(s):  
N.L. Jorge ◽  
L.C.A. Leiva ◽  
M.G. Castellanos ◽  
M.E. Gomez Vara ◽  
L.F.R. Cafferata ◽  
...  

We report the results obtained for the experimental determination and the theoretical calculation of the enthalpy of formation of 3,6-diphenyl-1,2,4,5-tetroxane molecule. The experimental work was performed using a macrocalorimeter to measure the combustion heat, and the sublimation enthalpy was determined via the measurement of the vapor pressure at equilibrium with the vapor phase at different temperatures resorting to the Clapeyron-Claussius equation. Theoretical calculations were performed using semiempirical AM1 and PM3 methods as well asab initiotechniques at the 3-21, 6-31G(d,p), and 6-311G(d,p) basis set levels.


2021 ◽  
Vol 9 (3) ◽  
pp. 174-179
Author(s):  
K. R. Patel ◽  

A field experiment was conducted at College Agronomy Farm, N. M. College of Agriculture, Navsari Agricultural University, Navsari during summer, 2019 and 2020 comprising four intercropping treatments i.e. pearlmillet sole, pearlmillet+greengram, pearlmillet+cowpea, pearlmillet+clusterbean and three fertility levels viz., 75 % RDF, 100 % RDF and 125 % RDF. Among the different intercropping system examined, sole pearl millet (I1) accumulated significantly less content of N and P in pearl millet grain and straw as compared to intercropping with pulses treatments. Pearl millet + green gram (I2) recorded significantly higher N and P uptake by pearl millet straw than other intercropping systems. The sole pearl millet (I1) was at par with pearl millet intercropped with green gram (I2) had significantly higher K content and uptake in pearl millet grain and straw. In case of fertility levels, nitrogen and phosphorus content and uptake in pearl millet grain and straw were recorded significantly higher by application of 100 % RDF. Significantly higher N, P and K uptake by pearl millet grain and straw in pooled results were produced by treatment combination of pearl millet + green gram (I2) intercropping along with 75 % RDF (F1).


2008 ◽  
Vol 5 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Baghdad Science Journal

Nutrient enrichment of Sawa lake water was made using different nitrogen and phosphorus concentrations during autumn and spring at three stations. Different concentrations of nitrogen, phosphorus and N: P ratios were used to test variations in phytoplankton population dynamics. Nitrogen at a concentration of 25 µmole.l-1 and N: P ratio of 10:1 gave highest phytoplankton cell number at all stations and seasons. A total of 64 algal taxa dominated by Bacillariophyceae followed by Cyanophyceae and Chlorophyceae were identified. The values of Shannon index of diversity were more than one in the studied stations.


Sign in / Sign up

Export Citation Format

Share Document