scholarly journals Neurological disorders in patients with long COVID syndrome and cell therapy methods for their correction a literature review

2021 ◽  
Vol 12 (3) ◽  
pp. 56-67
Author(s):  
I. S. Dolgopolov ◽  
G. L. Mentkevich ◽  
M. Yu. Rykov ◽  
L. V. Chichanovskaya

The review presents the current understanding of the incidence and nature of neurological disorders in patients with the so-called long COVID syndrome. Symptoms, putative pathophysiological mechanisms, risk factors, search for methods of treatment and rehabilitation of patients using the patient's own hematopoietic cells are discussed. A search was carried out for scientific articles, including those published in peer-reviewed journals indexed in PubMed, Web of Science, Scopus and RSCI. The inclusion of stem cells (SC) in rehabilitation programs for patients with various injuries and diseases of the central nervous system (CNS) is a promising area of research. The mechanisms of CNS damage therapy based on the use of adult-type pluripotent stem cells, including CD34+, consist of many aspects. On the background of SC transplantation, damaged nerve cells and surrounding tissues, including neurons and glial cells, can be restored, which helps to ensure the integrity of the nerve conduction pathway and, thus, restore nerve function. SC therapy can suppress genes involved in inflammation and apoptosis, as well as activate genes with neuroprotective action, thereby protecting spinal neurons from secondary damage. This line of cell therapy can be used to treat long COVID syndrome.

2019 ◽  
Vol 30 (8) ◽  
pp. 857-868 ◽  
Author(s):  
Ahmad Mehdipour ◽  
Ayyub Ebrahimi ◽  
Mohammad-Reza Shiri-Shahsavar ◽  
Jafar Soleimani-Rad ◽  
Leila Roshangar ◽  
...  

AbstractStem cell therapy has indicated a promising treatment capacity for tissue regeneration. Multiple sclerosis is an autoimmune-based chronic disease, in which the myelin sheath of the central nervous system is destructed. Scientists have not discovered any cure for multiple sclerosis, and most of the treatments are rather palliative. The pursuit of a versatile treatment option, therefore, seems essential. The immunoregulatory and non-chronic rejection characteristics of mesenchymal stem cells, as well as their homing properties, recommend them as a prospective treatment option for multiple sclerosis. Different sources of mesenchymal stem cells have distinct characteristics and functional properties; in this regard, choosing the most suitable cell therapy approach seems to be challenging. In this review, we will discuss umbilical cord/blood-derived mesenchymal stem cells, their identified exclusive properties compared to another adult mesenchymal stem cells, and the expectations of their potential roles in the treatment of multiple sclerosis.


Author(s):  
Johra Khan ◽  
Mithun Rudrapal ◽  
Eijaz Ahmed Bhat ◽  
Ahmad Ali ◽  
Mohammad Alaidarous ◽  
...  

The significance of biomaterials is well appreciated in nanotechnology, and its use has resulted in major advances in biomedical sciences. Although, currently, very little data is available on the clinical trial studies for treatment of neurological conditions, numerous promising advancements have been reported in drug delivery and regenerative therapies which can be applied in clinical practice. Among the commonly reported biomaterials in literature, the self-assembling peptides and hydrogels have been recognized as the most potential candidate for treatment of common neurological conditions such as Alzheimer’s, Parkinson’s, spinal cord injury, stroke and tumors. The hydrogels, specifically, offer advantages like flexibility and porosity, and mimics the properties of the extracellular matrix of the central nervous system. These factors make them an ideal scaffold for drug delivery through the blood-brain barrier and tissue regeneration (using stem cells). Thus, the use of biomaterials as suitable matrix for therapeutic purposes has emerged as a promising area of neurosciences. In this review, we describe the application of biomaterials, and the current advances, in treatment of statistically common neurological disorders.


2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Koraljka Baronica ◽  
Latica Friedrich

AbstractStem cells have long been in focus as potential therapy or even cure for a whole myriad of diseases. Many neurodegenerative disorders, both acute and chronic, are characterized by irreversible neuronal damage and loss, and only a few efficient treatment options exist. In contrast to many other tissues, the potential of self-regeneration of the central nervous system is highly limited. There is hope that stem cells could replace the damaged neuronal and glial cells, and provide biological and functional restoration based on their properties of self renewal and the ability to give rise to different cells. In recent years, the promising results of research on animal models has led to the establishment of the first clinical trials; although no clear evidence of therapeutic benefit for any of the conditions have been ascertained. Here we give a review of the current strategies of stem-cell based therapy for some of the more common neurological disorders, discussing the progress and current challenges, and giving an overview of future perspectives.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2377
Author(s):  
Beatriz Fernandez-Muñoz ◽  
Ana Belen Garcia-Delgado ◽  
Blanca Arribas-Arribas ◽  
Rosario Sanchez-Pernaute

Neural stem cells represent an attractive tool for the development of regenerative therapies and are being tested in clinical trials for several neurological disorders. Human neural stem cells can be isolated from the central nervous system or can be derived in vitro from pluripotent stem cells. Embryonic sources are ethically controversial and other sources are less well characterized and/or inefficient. Recently, isolation of NSC from the cerebrospinal fluid of patients with spina bifida and with intracerebroventricular hemorrhage has been reported. Direct reprogramming may become another alternative if genetic and phenotypic stability of the reprogrammed cells is ensured. Here, we discuss the advantages and disadvantages of available sources of neural stem cells for the production of cell-based therapies for clinical applications. We review available safety and efficacy clinical data and discuss scalability and quality control considerations for manufacturing clinical grade cell products for successful clinical application.


2021 ◽  
pp. 0271678X2110265
Author(s):  
You Jeong Park ◽  
Cesar V Borlongan

The last 50 years have witnessed the translation of stem cell therapy from the laboratory to the clinic for treating brain disorders, in particular stroke. From the focal stereotaxic transplantation to the minimally invasive intravenous and intraarterial delivery, stem cells display the ability to replenish injured cells and to secrete therapeutic molecules, altogether promoting brain repair. The increased stroke incidence in COVID-19 survivors poses as a new disease indication for cell therapy, owing in part to the cells’ robust anti-inflammatory properties. Optimization of the cell transplant regimen will ensure the safe and effective clinical application of cell therapy in stroke and relevant neurological disorders.


2012 ◽  
Vol 60 (S 01) ◽  
Author(s):  
R Roy ◽  
M Kukucka ◽  
D Messroghli ◽  
A Brodarac ◽  
M Becher ◽  
...  

2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


2012 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Christian Homsy ◽  

The scale of cardiac diseases, and in particular heart failure and acute myocardial infarction, emphasises the need for radically new approaches, such as cell therapy, to address the underlying cause of the disease, the loss of functional myocardium. Stem cell-based therapies, whether through transplanted cells or directing innate repair, may provide regenerative approaches to cardiac diseases by halting, or even reversing, the events responsible for progression of organ failure. Cardio3 BioSciences, a leading Belgian biotechnology company focused on the discovery and development of regenerative and protective therapies for the treatment of cardiac disease, was founded in this context in 2004. The company is developing a highly innovative cell therapy approach based on a platform designed to reprogramme the patient’s own stem cells into cardiac progenitor cells. The underlying rationale behind this approach is that, in order to reconstruct cardiac tissue, stem cells need to be specific to cardiac tissue. The key is therefore to provide cardiac-specific progenitor cells to the failing heart to induce cardiac repair.


Sign in / Sign up

Export Citation Format

Share Document