scholarly journals Fly Ash Utilization Analysis as A Substitute of Cement in Cement Treated Base (CTB)

2021 ◽  
Vol 06 (09) ◽  
Author(s):  
Utami Sylvia Lestari ◽  

Cement Treated Base (CTB) is a pavement layer located between the sub-base and surface layers. This pavement layer uses fine aggregate (sand) and cement as a binder. Fly ash is coal burning waste that can be used as an added material for road pavement. This study aimed to analyze the use of fly ash in the cement treated base pavement mixture. Fly ash was used as a substitute of cement. The composition used consists of fine aggregate (sand), cement, fly ash and water. The compressive strength test was carried out on variations in the composition of the test object. The requirements for CTB specifications were to have compressive strength test results ranging between 45 kg/cm2 – 55 kg/cm2 at the age of the test object for 7 days. After being tested, it was found that the composition of 70% fine aggregate (sand), 5% Portland cement, and 25% fly ash had an average compressive strength of 49.823 kg/cm2.

Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2018 ◽  
Vol 917 ◽  
pp. 297-302
Author(s):  
Jul Endawati ◽  
R. Utami ◽  
Rochaeti

Fly ash as a pozzolanic waste material can be utilized to substitute part of Portland cement in concrete mixture. The concrete paving industry utilizes the fly ash up to 50% (by weight) of the total binder. This study aims to obtain the characteristics of fly ash applications for pervious concrete. The composition of the binder developed based on the optimal proportion of fly ash from the previous study and the maximum of fly ash percentage used by the local paving industry in general. Other mix variations were made of the same binder composition with the addition of 6% of fine aggregates. The compressive strength of pervious concrete which binder composed of 63% portland cemet composite-25% fly ash-12% silica fume gained at 28 days, was not much different from the compressive strength of the pervious concrete without fine aggregate and with the binder composition of 50% FA-50% PCC and 0% SF. The value of the compressive strength test of the pervious concrete without fine aggregate is still within the range of compressive strength values ​​according to the ACI 522 R-10. The permeability rate of the pervious concrete is in the range of permeability research result of Chopra, 2013 (0.97 ÷ 1.90 cm/sec), but still higher compared to permeability rate gained by Dewoolkar, 2009 (0.83 ÷ 0.98 cm/sec).


2011 ◽  
Vol 99-100 ◽  
pp. 739-744
Author(s):  
Xiang Hao Wu ◽  
Li Zhen Bai ◽  
Cong Kai Zhang ◽  
Pan Yuan

By evaporable water test and compressive strength test, this paper studies on the influence of lime dust on pore structure and compressive strength of fly ash-cement paste. The test results show that: 1) With the volume of lime dust as cement replacement increasing, porosity and big pore to total volume ratio of fly ash-cement paste are gradually raising .However, with the volume of lime dust as fly ash replacement increasing, porosity of fly ash-cement paste decreases gradually, while big pore to total volume ratio firstly increases, and then decreases. 2) Substituting lime dust for isometric cement, compressive strength of fly ash-cement paste containing over 5% lime dust reduces gradually when the proportion of lime dust replacing cement raises. Whereas, substituting lime dust for isometric fly ash, the influence of lime dust content on compressive strength of fly ash-cement paste within less than 6% lime dust is not obvious. But When lime dust content is 9%, the compression strength of fly ash-cement paste increases by 20.0% around.


2021 ◽  
Vol 921 (1) ◽  
pp. 012070
Author(s):  
M Sofyan ◽  
A O Irlan ◽  
A Rokhman ◽  
D D Purnama ◽  
R R R Utami

Abstract Fly Ash, Rice Husk Ash and Linear Low Density Polyethylene (LLDPE) Plastic Waste also contribute to environmental problems. Starting from the problem of CO2 emissions to ecosystem damage due to the accumulation of waste on the earth’s surface. Therefore, this study focuses on the use of Fly Ash, Rice husk ash and LLDPE Powder as a mixture of Alkaline-Activated Mortar. In this study, Fly Ash as a Pozzolanic Material mixed with Alkaline Activator Solution serves as a binder for Mortar. Rice husk ash is used as a substitute material for Fly ash while LLDPE powder functions as a substitute material for sand. The percentage of LLDPE powder used in the mortar mixture is from 0 to 15% of the total weight of the mixture. While the percentage of rice husk ash used in the mixture is 7%, Alkali Activator Solution 27% and Sand ranging from 24.5 to 39.5%. There are six variations of the mortar specimen (AAMP1, AAMP2, AAMP3, AAMP4, AAMP5, AAMP6). Initial setting time testing is done on binder mortar. The mortar compressive strength test was carried out at the age of 7 days after curing the oven at temperatures of 40°C and 60°C. From the test results obtained the highest compressive strength of 11.3 MPa on the AAMP6 test object with a curing temperature of 60°C where the percentage of LLDPE powder on the specimen is 15%. The core of the longest setting time is in the AAMP6 Alkaline-Activated Mortar binder variation, which is 180 minutes. The mortar compressive strength test was carried out at the age of 7 days after curing the oven at temperatures of 40°C and 60°C. From the test results obtained the highest compressive strength of 11.3 MPa on the AAMP6 test object with a curing temperature of 60°C where the percentage of LLDPE powder on the specimen is 15%. The core of the longest setting time is in the AAMP6 Alkaline-Activated Mortar binder variation, which is 180 minutes. The mortar compressive strength test was carried out at the age of 7 days after curing the oven at temperatures of 40°C and 60°C. From the test results obtained the highest compressive strength of 11.3 MPa on the AAMP6 test object with a curing temperature of 60°C where the percentage of LLDPE powder on the specimen is 15%. The core of the longest setting time is in the AAMP6 Alkaline-Activated Mortar binder variation, which is 180 minutes.


Author(s):  
Edward Dinoy ◽  
Yohanes Gilbert Tampaty ◽  
Imelda Srilestari Mabuat ◽  
Joseph Alexon Sutiray Dwene

The compressive strength test is one of the technical properties or compressive strength tests that are commonly used in rock mechanics to determine the collapse point or the elasticity of rock against maximum pressure. The rock collapse point is a measure of the strength of the rock itself when the rock is no longer able to maintain its elastic properties. The purpose of this test is to find out how long the rock maintains its strength or elasticity properties when pressure is applied, and to find out the difference between the strength of compact rock and rock that has fractures when pressure is applied. Rocks that have fractures will break more easily or quickly when pressure is applied compared to compact rocks. This analysis is carried out by comparing the rock strength of each sample, both those that have fractures and compact rocks. To find out these differences, laboratory testing was carried out. The test results show the value (compressive strength test 57.76 MPa), (elastic modulus 5250.000MPa), (Poisson ratio 0.05) and the average value of rock mechanical properties test (axial 0.91), (lateral-0.279), and (volumetric 0.252) . Based on the test results above, it shows that rocks that have fractures will break more easily when pressure is applied, compared to compact rocks that have a long time in the uniaxial compressive strength test.


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


2020 ◽  
Vol 165 ◽  
pp. 03029
Author(s):  
Jiangong Yang

Through comparatively analyzing the impermeability and compressive strength test data of nano CaCO3 concrete with different content, this paper puts forward the method of optimizing the durability of nano CaCO3 concrete, and studies the influence of the content of fly ash on the durability of nano CaCO3 concrete on this basis, so as to provide a reference for improving the durability of concrete, so as to improve the recycling and reusing efficiency of building materials, and accelerate the practical application of nano CaCO3 concrete in engineering.


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


Author(s):  
L Opirina ◽  
Azwanda Azwanda ◽  
R Febrianto

Concrete is the result of a mixture of cement, aggregate and water. Under certain conditions, the concrete mixture can be added with additives and admixture to get the concrete as needed. Cement is the most important material in the manufacture of conventional concrete. When cement is produced, the same amount of CO2 will also be generated as a side effect and pollute the atmosphere. Fly ash as an alternative to cement will be introduced as an alternative concrete material to reduce the use of cement in the concrete mix. In addition to the use of charcoal fly ash as a partial substitute for cement, this study also uses palm oil clinkers as a substitute for fine aggregate as much as 20%. This replacement material is an industrial waste which has the main content of silica and alumina which is similar to the main material for forming concrete. In addition, the use of these two materials also aims to reduce the exploration of the use of natural materials. This research introduces 3 kinds of concrete composition. The grouping is based on the ratio of fly ash and cement used, namely (60%:40%), (70%:30%) and (80%:20%). The test object used is a concrete cylinder with a diameter of 150 mm and a height of 300 mm. Tests were carried out at the age of 28 days of concrete. The compressive strength test showed that the best concrete was produced from the combination of the addition of 60% fly ash of coal aged 28 days, which was 4.21 MPa.


2019 ◽  
Vol 10 (2) ◽  
pp. 35-40
Author(s):  
Agung Rizki Pratomo ◽  
Fepy Supriani ◽  
Agustin Gunawan

This research was motivated by the contained SiO2 in zeolite. The purpose of this research was to know the zeolite effect as a substitute of cement in constructing 14 days paving block material which used conventional method toward the compressive strength of paving block. This research used SNI 03-06-1996 in constructing and testing the materials. The material was cube shaped with ±5 cm size which consists of normal paving block and 6 variations with 5 specimens of each variation. Total of specimen were 35. Substitute of zeolite variations used 2,5%, 5%, 7,5%, 10%, 12,5%, and 15% on the weight of cement. The result of compressive strength of normal paving block is 15,64 MPa. The result of compressive strength test had increased in the variation of 2,5% zeolite substitute by 6,28% normal paving block. The result of compressive strength test results showed the greatest decrease in variation of 15% zeolite replacement by 39,05% against normal paving block. 


Sign in / Sign up

Export Citation Format

Share Document