scholarly journals Analysis of The Mechanical Properties of Concrete Based on Fly Ash and Palm Oil Clinkers

Author(s):  
L Opirina ◽  
Azwanda Azwanda ◽  
R Febrianto

Concrete is the result of a mixture of cement, aggregate and water. Under certain conditions, the concrete mixture can be added with additives and admixture to get the concrete as needed. Cement is the most important material in the manufacture of conventional concrete. When cement is produced, the same amount of CO2 will also be generated as a side effect and pollute the atmosphere. Fly ash as an alternative to cement will be introduced as an alternative concrete material to reduce the use of cement in the concrete mix. In addition to the use of charcoal fly ash as a partial substitute for cement, this study also uses palm oil clinkers as a substitute for fine aggregate as much as 20%. This replacement material is an industrial waste which has the main content of silica and alumina which is similar to the main material for forming concrete. In addition, the use of these two materials also aims to reduce the exploration of the use of natural materials. This research introduces 3 kinds of concrete composition. The grouping is based on the ratio of fly ash and cement used, namely (60%:40%), (70%:30%) and (80%:20%). The test object used is a concrete cylinder with a diameter of 150 mm and a height of 300 mm. Tests were carried out at the age of 28 days of concrete. The compressive strength test showed that the best concrete was produced from the combination of the addition of 60% fly ash of coal aged 28 days, which was 4.21 MPa.

2018 ◽  
Vol 917 ◽  
pp. 297-302
Author(s):  
Jul Endawati ◽  
R. Utami ◽  
Rochaeti

Fly ash as a pozzolanic waste material can be utilized to substitute part of Portland cement in concrete mixture. The concrete paving industry utilizes the fly ash up to 50% (by weight) of the total binder. This study aims to obtain the characteristics of fly ash applications for pervious concrete. The composition of the binder developed based on the optimal proportion of fly ash from the previous study and the maximum of fly ash percentage used by the local paving industry in general. Other mix variations were made of the same binder composition with the addition of 6% of fine aggregates. The compressive strength of pervious concrete which binder composed of 63% portland cemet composite-25% fly ash-12% silica fume gained at 28 days, was not much different from the compressive strength of the pervious concrete without fine aggregate and with the binder composition of 50% FA-50% PCC and 0% SF. The value of the compressive strength test of the pervious concrete without fine aggregate is still within the range of compressive strength values ​​according to the ACI 522 R-10. The permeability rate of the pervious concrete is in the range of permeability research result of Chopra, 2013 (0.97 ÷ 1.90 cm/sec), but still higher compared to permeability rate gained by Dewoolkar, 2009 (0.83 ÷ 0.98 cm/sec).


2015 ◽  
Vol 754-755 ◽  
pp. 400-405 ◽  
Author(s):  
Ridho Bayuaji ◽  
Muhammad Sigit Darmawan ◽  
Boedi Wibowo ◽  
Nur Ahmad Husin ◽  
Srie Subekti ◽  
...  

This study is conducted to determine the effect of four variables on compressive strength of geopolymer concretes. These four variables are binder/aggregate, Alkalinene/fly ash, effect of superplasticizer (SP) addition and curing system. The compressive strength is important mechanical properties for construction material. Taguchi experimental design method is used to compile the concrete composition of geopolymer to achieve the maximum compressive strength. Specimens concrete used is a cylinder with 100 mm diameter and 200 mm height. Compressive strength test is performed at 28 day using SNI 03-6825-2002, Indonesian National Standard. This study concludes that the chloride environment has a beneficial effect on the compressive strength of the concrete. In addition, the Alkalinene/fly ash ratio and binder/aggregate give a significant effect on the compressive strength of geopolymer concretes.


2021 ◽  
Vol 06 (09) ◽  
Author(s):  
Utami Sylvia Lestari ◽  

Cement Treated Base (CTB) is a pavement layer located between the sub-base and surface layers. This pavement layer uses fine aggregate (sand) and cement as a binder. Fly ash is coal burning waste that can be used as an added material for road pavement. This study aimed to analyze the use of fly ash in the cement treated base pavement mixture. Fly ash was used as a substitute of cement. The composition used consists of fine aggregate (sand), cement, fly ash and water. The compressive strength test was carried out on variations in the composition of the test object. The requirements for CTB specifications were to have compressive strength test results ranging between 45 kg/cm2 – 55 kg/cm2 at the age of the test object for 7 days. After being tested, it was found that the composition of 70% fine aggregate (sand), 5% Portland cement, and 25% fly ash had an average compressive strength of 49.823 kg/cm2.


2019 ◽  
Vol 2 (2) ◽  
pp. 65
Author(s):  
Purwanto P. ◽  
Himawan Indarto

Portland cement production process which is the conventional concrete constituent materials always has an impact on producing carbon dioxide (CO2) which will damage the environment. To maintain the continuity of development, while maintaining the environment, Portland cement substitution can be made with more environmentally friendly materials, namely fly ash. The substitution of fly ash material in concrete is known as geopolymer concrete. Fly ash is one of the industrial waste materials that can be used as geopolymer material. Fly ash is mineral residue in fine grains produced from coal combustion which is mashed at power plant power plant [15]. Many cement factories have used fly ash as mixture in cement, namely Portland Pozzolan Cement. Because fly ash contains SiO2, Al2O3, P2O3, and Fe2O3 which are quite high, so fly ash is considered capable of replacing cement completely.This study aims to obtain geopolymer concrete which has the best workability so that it is easy to work on (Workable Geopolymer Concrete / Self Compacting Geopolymer Concrete) and obtain the basic characteristics of geopolymer concrete material in the form of good workability and compressive strength. In this study, geopolymer concrete is composed of coarse aggregate, fine aggregate, fly ash type F, and activators in the form of NaOH and Na2SiO3 Be52. In making geopolymer concrete, additional ingredients such as superplastizer are added to increase the workability of geopolymer concrete. From this research, the results of concrete compressive strength above fc' 25 MPa and horizontal slump values reached 60 to 80 centimeters.


2020 ◽  
Vol 165 ◽  
pp. 03029
Author(s):  
Jiangong Yang

Through comparatively analyzing the impermeability and compressive strength test data of nano CaCO3 concrete with different content, this paper puts forward the method of optimizing the durability of nano CaCO3 concrete, and studies the influence of the content of fly ash on the durability of nano CaCO3 concrete on this basis, so as to provide a reference for improving the durability of concrete, so as to improve the recycling and reusing efficiency of building materials, and accelerate the practical application of nano CaCO3 concrete in engineering.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Iftekhair Ibnul Bashar ◽  
U. Johnson Alengaram ◽  
Mohd Zamin Jumaat ◽  
Azizul Islam

The effect of molarity of alkali activator, manufactured sand (M-sand), and quarry dust (QD) on the compressive strength of palm oil fuel ash (POFA) and fly ash (FA) based geopolymer mortar was investigated and reported. The variable investigated includes the quantities of replacement levels of M-sand, QD, and conventional mining sand (N-sand) in two concentrated alkaline solutions; the contents of alkaline solution, water, POFA/FA ratio, and curing condition remained constant. The results show that an average of 76% of the 28-day compressive strength was found at the age of 3 days. The rate of strength development from 3 to 7 days was found between 12 and 16% and it was found much less beyond this period. The addition of 100% M-sand and QD shows insignificant strength reduction compared to mixtures with 100% N-sand. The particle angularity and texture of fine aggregates played a significant role in the strength development due to the filling and packing ability. The rough texture and surface of QD enables stronger bond between the paste and the fine aggregate. The concentration of alkaline solution increased the reaction rate and thus enhanced the development of early age strength. The use of M-sand and QD in the development of geopolymer concrete is recommended as the strength variation between these waste materials and conventional sand is not high.


2011 ◽  
Vol 99-100 ◽  
pp. 924-927 ◽  
Author(s):  
Dong Xing Wang ◽  
Hong Xing Wang ◽  
Wen Zhao Chen

Solidified dredged materials as environment-friendly materials in construction domain are increasingly popular because of their better mechanical performance and low pollution. Based on the physical characteristic of dredged marine sediments, a series of tests, such as unconfined compressive strength test and tensile strength test, were performed to explore the mechanical properties of cement/lime-fly ash treated sediments for the beneficial use in road construction. Finally, the reinforcement mechanism of solidified sediments was explored by SEM tests from the point of view of the formation of CSH phases and the change in microstructure.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2020 ◽  
Vol 39 (3) ◽  
pp. 710-720
Author(s):  
I.M. Adamu ◽  
J.M. Kaura ◽  
A. Lawan ◽  
A. Ocholi

The failure of conventional concrete to have classical mechanical properties, reduced permeability and lead to sustainability in concrete production called for the use of supplementary Cementitious Materials (SCM) in concrete to improve its performance. This study investigates the effect of adding optimal dosage of an SCM called nanosilica (nS) on the tensile and compressive strengths, microstructural properties and cement hydration reaction for grade 30 concrete. The optimal dosage of the nS was determined to be 1.5% by weight of cement using compressive strength test. The influence of optimal nS dosage on the concrete properties was investigated using compressive strength test, splitting tensile strength test, Scanning Electron Microscopy (SEM) and Energy Dispersion Spectroscopy (EDS). Results revealed that optimal nS addition led to 30% and 23.3% respective increase in compressive and tensile strengths of conventional concrete at 7days of curing. SEM micrographs show better packing density in the nano-concrete at 90days of curing. EDS shows that addition of optimal nS dosage in concrete led to formation of more C-S-H gels at 90days curing period, and a corresponding reduction in Ca/Si ratio of the nano-concrete to 0.89; a ratio that is very close to that of 14Ǻ tobermorite reported in literature. The optimal nano-concrete can be used where strength improvement, especially at early age and reduction in concrete permeability are requirements. Keywords: Compressive strength, Tensile strength, Normal strength nano-concrete, SEM, EDS.


2020 ◽  
Vol 12 (2) ◽  
pp. 89
Author(s):  
Masbuhin Masbuhin

This study aims to determine the process of utilizing Sidoarjo Mud (LUSI) as a substitute for paving blocks and to determine the results of the compressive strength test of using LUSI as a substitute for paving blocks. The LUSI substitution is expected to be able to provide innovations in the construction of a paving block mixture. The research method used is the experimental method. The manufacture of test objects starts from the preparation stage, mix design, manufacture of test objects, testing and classifying paving blocks according to SNI 03-0691-1996. The sample of specimens used normal mix design and mix design substitute LUSI 40% of the fine aggregate value. Based on the results of research, paving blocks with a normal mix design of 1Pc: 2Ps are classified as quality A, 1Pc: 3Ps and 1Pc: 4Ps are classified as B quality, while for paving blocks substituting LUSI in a mixture of 1Pc: 2Ps is classified as quality B, for a mixture of 1Pc: 3Ps and 1Pc : 4Ps is classified as C quality. It can be concluded that the compressive strength of paving blocks has decreased in compressive strength after being substituted by LUSI, with a successive percentage value of 32%, 59% and 58%.


Sign in / Sign up

Export Citation Format

Share Document