scholarly journals ADOPTION AND DEVELOPMENT OF ALTERNATIVE FUEL VEHICLES IN TRINIDAD AND TOBAGO

Author(s):  
Kohan Dolcy ◽  
Trevor Townsend

The transport sector has been identified as one of the highest contributors to greenhouse gas emissions in Trinidad and Tobago owing to the increase in the number of vehicles and the inherent traffic congestion. The vehicles are mainly fuelled by conventional fuels with relatively few being alternative fuel vehicles (AFVs), primarily in the form of compressed natural gas (CNG) vehicles. This research explores the current situation with the development and adoption of AFV technology in Trinidad & Tobago. In Trinidad, the natural gas supply is already well-established, refuelling stations are in operation and up to 18 original equipment manufacturer CNG vehicles are available on the market, supplemented by the option of vehicle conversion. The opposite is true for electric vehicles, with only one recognized dealer offering electric vehicles and public charging stations, and only one related market incentive in effect. Despite the number of initiatives geared toward CNG development, the 2018 vehicle conversion targets have not been realized and it would require a very aggressive approach to achieve those figures by 2020. The authors have identified the key impediments to successful attainment of the targets. They note that few of the ongoing fiscal incentives, measures or pilot projects by the government ministries that are associated with renewable energies are directly linked to the transportation sector. Additionally, since measures of effectiveness for sustainability are not being monitored, the country cannot adequately determine its progress towards sustainability. The authors propose measures towards achieving sustainable development in transportation and to overcome the constraints of data availability, perceived barriers to AFV adoption and the notion of affordability over sustainability.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5765
Author(s):  
Patrick Reimers

Throughout decades, conflicts related to the access and usage of various energy sources have caused political tensions between nations and confederations of states. Thus, partially to decrease the dependence on fossil fuels, a thorough transition towards renewable energies has been promoted by several regional and national governments as well as by multinational institutions such as the European Union. In this context, the automotive industry has particularly been held responsible for the production of negative externalities, such as global greenhouse gas emissions (GHG emissions), noise and air pollution. To a notable extent, these externalities were caused by vehicles running on fossil fuels such as petroleum products, including gasoline, diesel fuel and fuel oil. Accordingly, it is often argued that replacing vehicles run by internal combustion engines (ICEs) with so-called alternative fuel vehicles (AFVs), particularly with plug-in electric vehicles (PEVs), is crucial to increase the sustainability of the transport sector. Moreover, several EU-member states aim to reduce the vehicle-related petrol and diesel demand to decrease their dependence on foreign energy sources. However, one must consider that there are important economic costs related to such a transition process. This paper evaluates the short-term and long-term effects of fiscal policies on the European automotive market in the period from 2010 to 2018, focusing on the impact of mentioned public incentives for AFVs. This public interventionism will be critically evaluated to examine the effectiveness of government incentives in promoting AFVs, particularly for plug-in electric vehicles (PEVs). The author argues that the rather positive sales evolution of AFVs was not caused by corresponding actual customer demand but mainly by governmental policies in an increasingly interventionist market. He acknowledges that the growing variety of available PEV models, the increasing driving range of electric vehicles, as well as their decreasing production costs due to economies of scale, have helped PEVs to become more competitive. However, the concern should be raised that mentioned public interventionism is unsustainable from a macroeconomic perspective, possibly leading to significant market distortion and a new artificial market bubble. The narrowed focus on battery electric vehicles prevents the market from further elaborating on other potentially more sustainable technologies. Moreover, from a geostrategic perspective, the transition of the European automotive industry towards electrification is likely to reduce the EU’s dependency on imported fossil fuels but enables several non-European automotive brands to conquer a significant market with their new competitive plug-in electric vehicle technologies.


2019 ◽  
Vol 11 (8) ◽  
pp. 2262 ◽  
Author(s):  
Xuefang Li ◽  
Chenhui Liu ◽  
Jianmin Jia

By using the 2017 National Household Travel Survey (NHTS) data, this study explores the status quo of ownership and usage of conventional vehicles (CVs) and alternative fuel vehicles (AFVs), i.e., Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs), in the United States. The young ages of HEVs (6.0 years), PHEVs (3.2 years) and BEVs (3.1 years) demonstrate the significance of the 2017 NHTS data. The results show that after two decades of development, AFVs only occupy about 5% of annual vehicle sales, and their share does not show big increases in recent years. Meanwhile, although HEVs still dominate the AFV market, the share of PHEVs & BEVs has risen to nearly 50% in 2017. In terms of ownership, income still seems to be a major factor influencing AFV adoption, with the median annual household incomes of CVs, HEVs, PHEVs and BEVs being $75,000, $100,000, $150,000 and $200,000, respectively. Besides, AFV households are more likely to live in urban areas, especially large metropolitan areas. Additionally, for AFVs, the proportions of old drivers are much smaller than CVs, indicating this age group might still have concerns regarding adopting AFVs. In terms of travel patterns, the mean and 85th percentile daily trip distances of PHEVs and HEVs are significantly larger than CVs, followed by BEVs. BEVs might still be able to replace CVs for meeting most travel demands after a single charge, considering most observed daily trip distances are fewer than 93.5 km for CVs. However, the observed max daily trip distances of AFVs are still much smaller than CVs, implying increasing the endurance to meet extremely long-distance travel demands is pivotal for encouraging consumers to adopt AFVs instead of CVs in the future.


Author(s):  
Amy Campbell ◽  
Tim Ryley ◽  
Robert Thring

Alternative fuel vehicles, such as battery electric vehicles and hydrogen fuel cell vehicles, support the imperative to decarbonise the transport sector, but are not yet at a stage in their development where they can successfully compete with conventional fuel vehicles. This paper examines the influence of knowledge and persuasion on the decision to adopt or reject alternative fuel vehicles, underpinned by Rogers’ Diffusion of Innovations theory. A household questionnaire survey was undertaken with respondents in the Sutton Coldfield suburb of the United Kingdom city of Birmingham. This suburb was previously identified as having a strong spatial cluster of potential early adopters of alternative fuel vehicles. The results confirm that among respondents the knowledge of alternative fuel vehicles was limited and perceptions have led to the development of negative attitudes towards them. The reasons largely relate to three problems: purchase price, limited range, and poor infrastructure availability. The majority of respondents have passively rejected alternative fuel vehicles, such that they have never given consideration to adoption. This confirms that a concerted effort is required to inform the general public about alternative fuel vehicles.


2021 ◽  
Author(s):  
◽  
Md Hasan

<p>Greenhouse gas emissions from New Zealand’s road transport sector have been increasing rapidly since 1990. Between 1990 and 2017, New Zealand’s gross greenhouse gas emissions increased by 23.1% while emissions from the road transport sector increased by 82%; rising to 15.9 MtCO2e in 2017 from about 8.8 MtCO2e in 1990. To reduce transport emissions, the government has undertaken various initiatives including electric vehicle support, introduction of an emissions trading scheme (ETS), promotion of biofuel and other alternative fuels, and announcement of a feebate scheme. However, even though some of these policies require time to take effect, it is evident from the increase in emissions that there has so far been little progress in terms of transport emissions reduction. This raises questions over the acceptability and effectiveness of the policies taken by the government.  Given the pressing need to reduce transport emissions globally and in New Zealand in particular, the present study initially investigates the major drivers of transport emissions from among a set of likely drivers, using a causality test. Because electric vehicles are widely seen as an obvious ‘solution’ within the sector, this study next examines the costs and mitigation potential of electric vehicles in the New Zealand context in order to understand the uncertainties, risks, barriers, costs, and policy gaps associated with their widespread adoption. Next, this study examines the scope for an increased carbon price signal to curb emissions growth. Finally, this study takes the view that technological and price instruments have to be seen within a wider range of possible transport policy measures, some of which may be complementary. The study therefore elicited the perspectives of a number of transport experts, and NGO and green energy activists. It ranked six mitigation policy pathways and 26 policy options on the basis of experts’, and NGO and green energy activists’ preferences.   Findings of this study include that poor vehicle fuel economy is the major driver of transport emissions in New Zealand. Policies such as a high minimum vehicle fuel economy standard and/or feebate scheme could effectively help New Zealand reduce its transport emissions significantly. Electric vehicles (EVs) are also found to be potentially very effective in reducing emissions as around 80-85% of New Zealand’s electricity comes from renewable generation. Moreover, in terms of the ownership costs of using EVs, used EVs are now the most cost competitive among various vehicle types such as new EVs, used internal combustion engine vehicles (ICEVs) and new ICEVs. An increase in the carbon price to around NZD 235 per tonne of carbon dioxide (tCO2) is also likely to help the transport sector reduce its emissions by 11% from the 1990 level and achieve the Paris target. However, according to experts’, and NGO and green energy activists’ preferences, EV support and an increased carbon price are not the most preferred emissions reduction options. Some experts, and NGO and green energy activists viewed EV subsidization, EV free parking and EV access to high occupancy lanes as unethical because EVs are mostly used by high-income people whereas low-income people often use bus or low-cost used cars. Likewise, some experts, and NGO and green energy activists did not prefer an increased carbon price because the impact of such a policy would be uneven, and low-income people would be hurt severely compared to high-income people. Results demonstrate that active and public transport support and travel demand management are the most preferred options. Since New Zealand roads are not wide enough to support a high level of individual car use both in the short and the long run, most experts, and NGO and green energy activists preferred active and public transport under current and future circumstances. Policies related to bio-fuel support were least preferred because most experts, and NGO and green energy activists think an increased production and use of biofuels is likely to replace existing forestry and farm activity and decrease food production and forestry. It is hoped that the findings of this study will help to better illuminate the difficult policy options facing policy makers and work to assist them in identifying the most acceptable policies and projects for investment.</p>


Author(s):  
Jérome Massiani ◽  
Jens Weinmann

In this paper, we estimate the emissions resulting from electric vehicles in Germany. We make use of EMOB, a comprehensive simulation model that provides a forecast and evaluation of the diffusion of alternative fuel vehicles in the next decades. Our method to compute emissions differs from existing ones by a "pivotal marginal" or "hourly marginal" calculation that takes into account the predicted time pattern of EV reloading and can offer a parsimonious alternative to resource intensive micro simulation models. Our approach results in EV emissions of 87 g/km in 2012 and 82 g/km in 2020. These estimates are much higher than those provided by simplified approaches (marginal and average emission) in the short run and get close to marginal emissions after 2035. Co-ordinated charging may reduce the emissions only marginally (usually less than 4 %). Generally, our findings cast doubts on the general claim that electric cars could be fuelled by renewable energy in general, and with fluctuating excess supply of renewables (wind, solar) in particular. This conclusion persists even in the presence of realistic coordination schemes.


2018 ◽  
Vol 7 (11) ◽  
pp. 242 ◽  
Author(s):  
Scott Kelley

There is growing agreement that refueling station location plans that aim to encourage public adoption of alternative fuel vehicles (AFVs) should include sites near freeways in urban areas. Little is known, though, about the refueling behavior of early AFV adopters in these locations, which can involve travel on complex and congested roadways. To address this, an intercept travel survey collected data from 158 drivers of compressed natural gas (CNG) vehicles who refueled at CNG stations near freeways in greater Los Angeles, California. Results show that these stations met refueling demand from across the majority of the metropolitan area, and the distribution of local and distant refueling demand was consistent except for the downtown station. Drivers also considered these stations to be safe and accessible. Nearly half of drivers did not include another local stop in conjunction with their refueling trip that required leaving and returning to the freeway. These respondents refueled on longer trips with lower fuel tank levels, while refueling at the station that minimized deviation. Refueling downtown negatively influenced refueling in this manner. These findings should be considered when recommending station sites near freeways in future AFV infrastructure plans.


Author(s):  
Anant D. Vyas ◽  
Michael Q. Wang

Section 501 of the 1992 Energy Policy and Conservation Act (EPACT) mandates that alternative fuel providers who sell such fuels for transportation acquire alternative fuel vehicles (AFVs). The potential impacts of this mandate on the two largest groups of alternative fuel providers—electricity and natural gas (NG) providers—are presented. Nationwide, 166 electric-only utilities, 127 NG-only utilities, and 55 dual-utilities are covered by EPACT. Together, these companies own or operate nearly 122,000 light-duty vehicles in EPACT-defined metropolitan areas. Some 63 NG producers and transporters, which have 9,700 light-duty vehicles, are also covered. Covered fuel providers are expected to purchase 2,710 AFVs in 1996 and 13,650 AFVs by 2001. NG companies already have 19.4 percent of their existing light-duty vehicle stocks as AFVs, dual companies have 10.0 percent, NG producers and transporters have 7.0 percent, and electric companies have 1.6 percent. If the existing AFVs count toward meeting the Section 501 requirements, NG providers (utilities, dual utilities, producers, and transporters) will need to make little effort, but electric companies will have to make substantial commitments to meet the requirement.


2021 ◽  
Author(s):  
◽  
Md Hasan

<p>Greenhouse gas emissions from New Zealand’s road transport sector have been increasing rapidly since 1990. Between 1990 and 2017, New Zealand’s gross greenhouse gas emissions increased by 23.1% while emissions from the road transport sector increased by 82%; rising to 15.9 MtCO2e in 2017 from about 8.8 MtCO2e in 1990. To reduce transport emissions, the government has undertaken various initiatives including electric vehicle support, introduction of an emissions trading scheme (ETS), promotion of biofuel and other alternative fuels, and announcement of a feebate scheme. However, even though some of these policies require time to take effect, it is evident from the increase in emissions that there has so far been little progress in terms of transport emissions reduction. This raises questions over the acceptability and effectiveness of the policies taken by the government.  Given the pressing need to reduce transport emissions globally and in New Zealand in particular, the present study initially investigates the major drivers of transport emissions from among a set of likely drivers, using a causality test. Because electric vehicles are widely seen as an obvious ‘solution’ within the sector, this study next examines the costs and mitigation potential of electric vehicles in the New Zealand context in order to understand the uncertainties, risks, barriers, costs, and policy gaps associated with their widespread adoption. Next, this study examines the scope for an increased carbon price signal to curb emissions growth. Finally, this study takes the view that technological and price instruments have to be seen within a wider range of possible transport policy measures, some of which may be complementary. The study therefore elicited the perspectives of a number of transport experts, and NGO and green energy activists. It ranked six mitigation policy pathways and 26 policy options on the basis of experts’, and NGO and green energy activists’ preferences.   Findings of this study include that poor vehicle fuel economy is the major driver of transport emissions in New Zealand. Policies such as a high minimum vehicle fuel economy standard and/or feebate scheme could effectively help New Zealand reduce its transport emissions significantly. Electric vehicles (EVs) are also found to be potentially very effective in reducing emissions as around 80-85% of New Zealand’s electricity comes from renewable generation. Moreover, in terms of the ownership costs of using EVs, used EVs are now the most cost competitive among various vehicle types such as new EVs, used internal combustion engine vehicles (ICEVs) and new ICEVs. An increase in the carbon price to around NZD 235 per tonne of carbon dioxide (tCO2) is also likely to help the transport sector reduce its emissions by 11% from the 1990 level and achieve the Paris target. However, according to experts’, and NGO and green energy activists’ preferences, EV support and an increased carbon price are not the most preferred emissions reduction options. Some experts, and NGO and green energy activists viewed EV subsidization, EV free parking and EV access to high occupancy lanes as unethical because EVs are mostly used by high-income people whereas low-income people often use bus or low-cost used cars. Likewise, some experts, and NGO and green energy activists did not prefer an increased carbon price because the impact of such a policy would be uneven, and low-income people would be hurt severely compared to high-income people. Results demonstrate that active and public transport support and travel demand management are the most preferred options. Since New Zealand roads are not wide enough to support a high level of individual car use both in the short and the long run, most experts, and NGO and green energy activists preferred active and public transport under current and future circumstances. Policies related to bio-fuel support were least preferred because most experts, and NGO and green energy activists think an increased production and use of biofuels is likely to replace existing forestry and farm activity and decrease food production and forestry. It is hoped that the findings of this study will help to better illuminate the difficult policy options facing policy makers and work to assist them in identifying the most acceptable policies and projects for investment.</p>


2019 ◽  
Vol 13 (2) ◽  
pp. 424-449
Author(s):  
Aldi M. Hutagalung ◽  
Djoni Hartono ◽  
Maarten J. Arentsen ◽  
Jon C. Lovett

Purpose The purpose of the paper is to provide to a better scientific understanding of Indonesia’s domestic gas allocation policy and its effects on the national economy and to answer the question of what best priorities can be set in allocating the natural gas for the domestic market to maximize the benefits for the national economy. Design/methodology/approach The authors apply a Computabled General Equilibrium (CGE). The Social Accounting Matrix 2008 is used to calibrate the CGE Model. There are two scenarios proposed, each is simulated with certain percentage of gas supply curtailment (50 MMSCFD, Scenario A), (100 MMSCFD, Scenario B). Findings It is confirmed that government’s current policy to give priority to oil production is not the optimum way to maximize added value of natural gas to Indonesian economy. While oil production generates state revenue, it is industry and petrochemical sector that induces high economic impacts because of strong backward and forward linkages. Research limitations/implications Due to the limited data availability, it is assumed that the data on the SAM 2008 are valid for describing the structure of Indonesian economy. Practical implications The paper provides recommendation to the government to revise gas allocation policy by changing the rank of consumers’ priority. Originality/value This paper provides instruments to measure the impact of Indonesia’s domestic gas allocation policy. Finding the best hierarchy of consumer priorities is essential for maximizing added value of natural gas for the national economy.


Sign in / Sign up

Export Citation Format

Share Document