scholarly journals Growth and productivity of energy poplar plantations in Prykarpattia

2019 ◽  
Vol 0 (7) ◽  
pp. 11-11
Author(s):  
Ya. D. Fuchylo ◽  
N. M. Lys ◽  
N. L. Tkachuk ◽  
V. I. Solovka
Keyword(s):  
Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1639
Author(s):  
Miguel Lao-Pérez ◽  
Diaa Massoud ◽  
Francisca M. Real ◽  
Alicia Hurtado ◽  
Esperanza Ortega ◽  
...  

Most mammalian species of the temperate zones of the Earth reproduce seasonally, existing a non-breeding period in which the gonads of both sexes undergo functional regression. It is widely accepted that photoperiod is the principal environmental cue controlling these seasonal changes, although several exceptions have been described in other mammalian species in which breeding depends on cues such as food or water availability. We studied the circannual reproductive cycle in males of the Mediterranean pine vole, Microtus duodecimcostatus, in the Southeastern Iberian Peninsula. Morphological, hormonal, functional, molecular and transcriptomic analyses were performed. As reported for populations of other species from the same geographic area, male voles captured in wastelands underwent seasonal testis regression in summer whereas, surprisingly, those living either in close poplar plantations or in our animal house reproduced throughout the year, showing that it is the microenvironment of a particular vole subpopulation what determines its reproductive status and that these animals are pure opportunistic, photoperiod-independent breeders. In addition, we show that several molecular pathways, including MAPK, are deregulated and that the testicular “immune privilege” is lost in the inactive testes, providing novel mechanisms linking seasonal testosterone reduction and testis regression.


2021 ◽  
Author(s):  
Dalong Jiang ◽  
Qian Li ◽  
Qinghong Geng ◽  
Menghua Zhang ◽  
Chonghua Xu ◽  
...  

Abstract Aims Leaf nutrient resorption is sensitive to changes in soil nutrients. However, the effects of N deposition on nutrient resorption efficiency (NuRE) in plant macro-nutrients remain unclear. Poplar (Populus deltoids) is one of the most extensively cultivated hardwood species worldwide. We explored general patterns and dominant drivers of NuRE and stoichiometry of poplar plantations in response to N addition. Methods We conducted a 4-year N-addition experiment to explore NuRE and stoichiometric responses to N addition in two poplar (Populus deltoids) plantations (8- and 12-year-old stands) in a coastal region of eastern China. We measured soil and foliar (green and senesced leaves) concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) for a series of N addition treatments including N0 (0 kg N ha ‒1 yr ‒1), N1 (50 kg N ha ‒1 yr ‒1), N2 (100 kg N ha ‒1 yr ‒1), N3 (150 kg N ha ‒1 yr ‒1), and N4 (300 kg N ha ‒1 yr ‒1). Important Findings Consistent for (both) 8- and 12-year-old stands, N addition did not affect the NuRE and stoichiometry (with the exception of CaRE and CaRE:MgRE ratio). NRE-PRE scaling slopes were consistently less than 1.0 under N addition. These results suggest that NRE generally decouples from PRE within each N treatment. Moreover, these results point to robust control of green leaf nutritional status on nutrient resorption processes as indicated by the positive relationships between nutrient resorption efficiency and green leaf nutrient concentrations. Our findings provided a direct evidence that growth in 12-year-old poplar plantations was N-limited in a coastal region of eastern China.


Author(s):  
Matthias Meyer ◽  
Filipa Tavares Wahren ◽  
Norbert Weber ◽  
Ronald S. Zalesny ◽  
Martin Weih

2007 ◽  
Vol 9 (5) ◽  
pp. 468 ◽  
Author(s):  
Pamela D. Neumann ◽  
Naomi T. Krogman ◽  
Barb R. Thomas

2001 ◽  
Vol 58 (8) ◽  
pp. 861-868 ◽  
Author(s):  
No�l Lust ◽  
Tine Kongs ◽  
Lieven Nachtergale ◽  
Luc De Keersmaeker

Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 644 ◽  
Author(s):  
Yuanyuan Li ◽  
Han Chen ◽  
Qianyun Song ◽  
Jiahui Liao ◽  
Ziqian Xu ◽  
...  

Poplar plantations have the capacity to improve the properties of soils in muddy coastal areas; however, our understanding of the impacts of plantation development on soil arthropods remains limited. For this study, we determined the community dynamics of soil dwelling arthropods across poplar plantations of different ages (5-, 10-, and 21-years) over the course of one year in Eastern Coastal China. The total abundance of soil arthropods differed with stand development. Further, there were some interactions that involved the sampling date. On average, total abundance was highest in the 10-year-old stands and lowest in the 5-year-old stands. Total abundance exhibited strong age-dependent trends in June and September, but not in March or December. The abundance of Prostigmata and Oribatida increased in the 5- to 21-year-old stands, with the highest levels being in the 10-year-old stands. The abundance of Collembola increased with stand development; however, the stand age had no significant impact on the abundance of epedapic, hemiedaphic, and euedaphic Collembola. Order richness (Hill number q = 0) curve confidence intervals overlapped among three stand ages. Shannon and Simpson diversity (Hill numbers q = 1 and q = 2) differed between 10- and 21-year-old stand age. They showed almost similar trends, and the highest and lowest values were recorded in the 21- and 10-year-old stand ages, respectively. Permutational multivariate analysis of variance demonstrated that composition also varied significantly with the sampling date and stand age, and the 10-year-old stands that were sampled in June stood well-separated from the others. Indicator analysis revealed that Scolopendromorpha and Prostigmata were indicators in June for the 10-year-old stands, while Collembola were indicators for the 21-year-old stands sampled in September. Our results highlight that both stand development and climate seasonality can significantly impact soil arthropod community dynamics in the reclaimed coastal saline soils of managed poplar plantations.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Sihan Wang ◽  
Weiwei Lu ◽  
Fangchao Zhang

Afforestation is a strategy to protect croplands and to sequestrate carbon in coastal areas. In addition, inorganic carbon is a considerable constitute of the coastal soil carbon pool. However, the vertical distribution and controlling factors of soil inorganic carbon (SIC) in plantations of coastal areas have been rarely studied. We analyzed the SIC content as well as physiochemical properties along soil profiles (0–100 cm) in young (YP) and mature (MP) poplar plantations in coastal eastern China. The soil profile was divided into six layers (0–10, 11–20, 21–40, 41–60, 61–80 and 81–100 cm) and a total of 36 soil samples were formed. The SIC content first increased from 0–10 cm (0.74%) to 11–20 cm (0.92%) and then fluctuated in the YP. In contrast, the SIC content increased with increasing soil depth until 40 cm and then leveled off, and the minimum and maximum appeared at 0–10 cm (0.54%) and 81–100 cm (0.98%) respectively in the MP. The soil inorganic carbon density was 12.05 and 12.93 kg m−2 within 0–100 cm in the YP and MP, respectively. Contrary to SIC, soil organic carbon (SOC) first decreased then levelled off within the soil profiles. Compared with the YP, the SIC content decreased 27.8% at 0–10 cm but increased 13.2% at 21–40 cm, meanwhile the SOC content in MP decreased 70.6% and 46.7% at 21–40 cm and 61–80 cm, respectively. The water-soluble Ca2+ and Mg2+ gradually decreased and increased, respectively within the soil profiles. The soil water-soluble Ca2+ increased 18.3% within 41–100 cm; however, the soil water-soluble Mg2+ decreased 32.7% within 21–100 cm in the MP when compared to the YP. Correlation analysis showed that SIC was negatively correlated with SOC, but positively correlated with soil pH and water-soluble Mg2+. Furthermore, structural equation modeling (SEM) indicated that SOC was the most important factor influencing the SIC content in the studied poplar plantations, indicating SOC sequestration promoted the dissolution of SIC. Therefore, our study highlights the trade-off between SIC and SOC in poplar plantations of coastal Eastern China.


2013 ◽  
Vol 43 (2) ◽  
pp. 139-142 ◽  
Author(s):  
Stephanos Diamandis ◽  
Charikleia Perlerou

Uncertainty among Greek farmers who are in search of new and profitable crops has increased interest in truffle cultivation. Recent research has come up with 23 taxa of hypogeous fungi new for Greece including gastronomically valuable species. Natural ecosystems of <em>Quercus pubescens, Q. frainetto, Q. ilex</em> and <em>Q. coccifera</em> seem to be rich in hypogeous species. Ecosystems with <em>Corylus avellana, Carpinus betulus</em>, Mediterranean pines and even poplar plantations were found to also host hypogeous fungi. These records, supported by historical information about the existence of truffles in Greece, seem to be encouraging hints for systematic truffle cultivation.


2008 ◽  
pp. 171-185 ◽  
Author(s):  
Ljiljana Keca ◽  
Nenad Rankovic ◽  
Sanja Pajic

The commercial profitability of poplar cultivation was analysed in an artificial poplar plantation, rotation 25 years. The aim of the study was to check the justification of the invested financial means in artificial poplar plantations, based on the analysis of costs and receipts in the period of 25 years, by using the method of analysis of commercial profitability. The evaluation of investments was performed by modern methods which, in this way, found their practical implementation in forestry.


Sign in / Sign up

Export Citation Format

Share Document