scholarly journals Improved Sugars Release from Chili Post-harvest Residues by Dilute Acid Assisted Lime Pretreatment

Author(s):  
Raveendran Sindhu ◽  
Athira Antony ◽  
Parameswaran Binod ◽  
Ashok Pandey ◽  
Anil Kuruvilla Mathew ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 586 ◽  
Author(s):  
Kinga Treder ◽  
Magdalena Jastrzębska ◽  
Marta Katarzyna Kostrzewska ◽  
Przemysław Makowski

Earthworm species composition, the density of individuals, and their biomass were investigated in spring barley and faba bean fields in a long-term (52-year) experiment conducted at the Production and Experimental Station in Bałcyny, in north-eastern Poland (53°40′ N; 19°50′ E). Additionally, post-harvest residues biomass, soil organic matter (SOM), and soil pH were recorded. The above traits were investigated using two experimental factors: I. cropping system—continuous cropping (CC) vs. crop rotation (CR) and II. pesticide plant protection: herbicide + fungicide (HF+) vs. no plant protection (HF−). A total of three species of Lumbricidae were found: Aporrectodea caliginosa (Sav.) in both crops, Aporrectodea rosea (Sav.) in spring barley, and Lumbricus terrestris (L.) in faba bean. The density and biomass of earthworms were unaffected by experimental treatments in spring barley fields, whereas in faba bean CC increased and HF+ decreased earthworm density and biomass in comparison with CR and HF− respectively. Total post-harvest residues in faba bean fields were higher under CC in relation to CR and under HF+ compared with HF− treatment in both crops. Compared to CR, CC increased soil pH in spring barley fields and decreased in faba bean fields. Experimental factors did not affect SOM. Earthworm density and biomass were positively correlated with SOM content.


Author(s):  
R. A. Vozhegova ◽  
◽  
N. M. Galchenko ◽  
D. I. Kotelnikov ◽  
V. M. Мaliarchuk ◽  
...  

The article reflects the results of research on the study of crop rotation productivity and energy efficiency components of crop rotation technology in terms of depending on different methods and depth of basic tillage. The purpose of the research was to determine the impact of basic tillage and fertilization on crop rotation productivity indicators and indicators of economic efficiency of crop rotation technology in irrigated conditions in the south of Ukraine. Methods: the field, in-gravimetric, visual, laboratory, calculation-comparative, mathematically-statistical and confessedly in Ukraine methods and methodical recommendations. The research was conducted during 2016-2019 in the research fields of the Askanian SARS IIA NAAS of Ukraine. Results. The use of differentiated and shallow single-depth system of basic tillage to the same productivity indicators at the level of 8.21 and 8.22 t.o.o./ha of products. However, the use of shallow tillage with different depths increased the productivity to 8.49 tons of water/ha, or 3.3%, and with no-till the lowest productivity was obtained 7.15 tons of water/ha. At the same time, the organo-mineral system of fertilizer N90P40 + green manure + crop residues yielded at the level of 7.61 tons per hectare. The improvement of nitrogen nutrition of crop rotations to N105P40 + green manure to get her with the earning of crop residues increased this figure to 8.06 ton so.o./ha, or 5.9% more than the control. At the same time, the maximum productivity indicators of 8.52 tons per hectare were obtained for the N120P40 system + green manure + post-harvest residues, which is actually 12% more than in the control. The reduction of total energy consumption was obtained with a shallow single-depth system of main cultivation of 26.45 GJ/ha, and the lowest values of 25.27 GJ/ha were obtained with no-till, which is 6.8% less than in the control. Application of organo-mineral fertilizer system N90P40 + green manure + post harvest residues formed costs at the level of 24.94 GJ/ha, increase of nitrogen nutrition of crop rotations to N105P40 + green manure with post harvest residues increased costs to 26.35 GJ/ha, and the highest costs 26.37 GJ/ha was obtained in the variant N120P40 + green manure, where the figures were higher by 11.5% compared to the control. Almost the same energy yield was obtained for differentiated and single-depth shallow tillage systems 127.33 and 127.64 GJha, respectively. The application of the system of multi-depth tillage increased the yield to 133.24 GJ/ha. Conclusion. The calculation of energy efficiency testifies that growing of agricultural cultures at bringing of N120Р40 + green manure + post-harvest residues in the system of the plowless on different depth is most expedient and justified from the power point of view. Technology of growing, which is based on these agrotechnology measures provides the receipt of maximal energy coefficient at the level of 4,96


2021 ◽  
Vol 13 (4) ◽  
pp. 11035
Author(s):  
Antonina PANFILOVA

The aim of the work was to improve soil fertility and increase the yield of winter wheat using the stubble biodestructor by activating the microbiological activity of the soil. The experimental studies were on the research field of Mykolayiv National Agrarian University (Ukraine). After harvesting the precursor cultures of spring barley and peas the post-harvest residues of these crops were treated with a stubble biodestructor. After treatment of crop residues of spring barley and pea by the stubble biodestructor in the soil layer of 0 up to 20 cm the quantity of cellulose-destructive microorganisms increased by 27.9·105 up to 36.0·105 cfu/g of soil depending on the predecessor culture and the degree of degradation of these residues increased by 31.4 up to 45.1%. The number of nitrogen fixators in the 0-10 cm soil layer grew under the action of treatment of crop residues of spring barley and peas by stubble biodestructor on 13.4 up to 14.1 ·106 cfu/g of soilor 30.3 up to 35.0%. At the same time, a somewhat large number of bacteria in the soil was determined by the processing of post-harvest residues of peas, which was due to the biological characteristics of this legume culture. The average for years of researches at cultivating of winter wheat after spring barley using the stubble biodestructor the grain yield increased by 0.45 t ha–1, or 20.9%, and after pea it increased by 0.67 t ha–1 or 18.8% compared to the treatment variant of stubble just with water.


2018 ◽  
Vol 8 (1) ◽  
pp. 487-497
Author(s):  
А.І. Тsyliuryk ◽  
S.M. Shevchenko ◽  
Ya.V. Ostapchuk ◽  
A.M. Shevchenko ◽  
E.A. Derevenets-Shevchenko

<p>Due to the violation of the technology of sunflower growing in Ukraine and the disbalance of scientifically grounded crop rotation, or their complete absence, with the expansion of sunflower seeds in the structure of crops to 40% and more, and the simplification of the system of basic cultivation of arable land, accompanied by a sharp increase in perturbation of crops by autotrophic and parasitic weeds. To determine the impact of agrotechnical measures, saturation of sunflower seeds, soil tillage systems, and fertilization on the number and species composition of various agrobiological groups of weeds in sunflower crops, including <em>Orobahche cumana</em> Walls. To reduce the herbicide (chemical) loading in agrophytocoenoses of oilseed crops, and ecologization of protection from weeds it was supposed to reveal optimal and environmentally friendly parameters of modern elements of sunflower cultivation technology. The scheme of the experiment included two grains–steam–breeding and grain–seed crop rotations with saturation in the structure of sunflower seeding 12.5%, 20% and 33.3%; three cardinally different systems of basic cultivation of the ground (filed plowing, differentiated and systems of mulching and no-till); two fertilizer systems (no fertilizers + post–harvest residues, N30–60P30–45K30–45 + post–harvest residues). All other elements of agrotechnics were standard and generally accepted for the steppe zone. The accounting of obstinacy was carried out by quantitative–weight and species–specific methods. A tendency has been observed to increase the number of weeds before the first inter–row treatment for mulching and no-till and direct sowing (10.4–15.1 pcs/m<sup>2</sup>) in 1.3–1.5 times compared with the filed plowing (7, 1–12.4 pc. /m<sup>2</sup>). At the time of harvesting in comparison with the spring definition, the infestation of oilseed crop under fertilized background decreased by 1.6–4.2 times; and their quantitative values were 2.6–5.2 pcs/m2 (field plowing), 4.1–8.1 (differentiated tillage), 5.5–12.4 pcs/m<sup>2 </sup>(no-till), indicating the preservation of regularities inherent in the spring period. It was established that the air–dry weight of weeds (within the limits of individual terms of the definition) varied in versions directly proportional to the change in quantitative values, and on average slightly higher for mulching and no-till (3.8–15.7 g/m<sup>2</sup>) than filed plowing (1.8–12.3 g/m<sup>2</sup>). It was proved that the degree of manifestation of the active biological phase of the vaginal parasitism naturally increased with the reduction of the time interval of sunflower return in crop rotation, especially in 3–way crop rotation (33.3% sunflower) – 6.9–12.7%, that is, each sunflower field in the crop rotation – an additional resource for the accumulation of Broomrape in the soil. The increase in the degree of sunflower damage with sunflower wool (up to 11.0–12.7 pcs/100 plants) was observed on the background of deep plowing and decreased with a decrease in the depth of main cultivation in shallow and direct sowing by 6.9–7.8%, or 1.6 times as a result of the localization of the Broomrape in the ground beside the sunflower roots, which provokes its germination with its root secretions, while the seeds of Broomrape for mulching and no-till are located on the top of the soil, soil surface or plant residues, that make impossible its germination in a more dense soil in the absence of the root system of host plant (sunflower). Maximum seed yield (2.35–2.82 t/ha) was obtained in 8–crop rotation at the concentration of sunflower in the seed structure of 12.5%. Extension of the sown area to 25% and 33.3% contributed to a decrease in yields of 2.14–2.67 and 2.10–2.56 t/ha, or 8.9–5.3% and 10.0– 9.2% due to the increase in the degree and intensity of damage to plants by Broomrape. Thus, the expansion in the structure of sunflower crops to 33.3% and the minimization of the main cultivation of the soil leads to an increase in perishability by autotrophic weeds in 1.3–1.5 times, and the degree and intensity of damage by Broomrape, on the contrary, decreases on the finely treated agrofons regarding the localization of seeds in the upper layer of soil or on plant residues, which makes it impossible to germinate.</p>


2013 ◽  
Vol 35 (2) ◽  
Author(s):  
Clóves Cabreira Jobim ◽  
Fabio Cortez Leite de Oliveira ◽  
Valter Harrys Bumbieris Junior ◽  
Michele Simili da Silva

2020 ◽  
Vol 113 (3) ◽  
pp. 1315-1322 ◽  
Author(s):  
David Francis Cook ◽  
Robert A Deyl ◽  
Jeremy B Lindsey ◽  
Mario F D’Antuono ◽  
Donald V Telfer ◽  
...  

Abstract Stable fly (Stomoxys calcitrans L.) remain a significant pest affecting livestock and rural communities on the Swan Coastal Plain around Perth, Western Australia. Vegetable crop residues remaining after harvest enable stable fly development. Left untreated they can produce from several hundred to &gt;1,000 stable fly/m2 of post-harvest residues. We studied the effect of burial and compaction of sandy soils on adult emergence of stable fly and house fly (Musca domestica L.) (Diptera: Muscidae). Adults of both fly species can move up through 50 cm of loose, dry sand, however at depths greater than 60 cm, emergence rapidly declines with &lt;5% of adults surviving under 100 cm of soil. Burial of stable fly larvae and pupae under 15 cm of soil followed by compaction using a static weight dramatically reduced adult emergence. Moist soil compacted at ≥3 t/m2 completely prevented stable fly emergence whereas house fly emergence was not affected. One t/m2 of compaction resulted in &lt;5% emergence of stable fly buried as pupae. Soil that was easily compactible (i.e., high silt, fine sand and clay content) reduced stable fly emergence more than soil with more coarse sand and low clay content. This study demonstrates the potential for a novel and chemical-free option for controlling stable fly development from vegetable crop post-harvest residue. Field trials are needed to confirm that burial and compaction of vegetable post-harvest residues using agricultural machinery can dramatically reduce the subsequent emergence of adult stable fly on a large scale.


2005 ◽  
Vol 85 (1) ◽  
pp. 19-26 ◽  
Author(s):  
D. W. Hopkins ◽  
E. G. Gregorich

Corn and other crops genetically modified to express the insecticidal δ-endotoxin from Bacillus thuringiensis (Bt) are grown widely across north America. Studies have shown that the δ -endotoxin can be stabilised on soil colloids where its activity is retained, but reports of direct ecological effects of the δ-endotoxin on soil processes are limited. We have determined the concentrations of the δ-endotoxin in organic residues fro m Bt-corn plants at increasing stages of ageing and decay, and the subsequent decomposition in soil of these residues and the δ-endotoxin in them. The δ-endotoxin concentrations declined from 6.8 μg g-1 in the fresh plant material, to 0.82 μg g-1 in the post-harvest residues collected in the fall, and to 0.026 μg g-1 in the residues collected from soil surface the following spring. The concentration of δ -endotoxin in buried residues collected in the spring was not significantly different from zero. When incubated in soil in the laboratory over 84 d, the δ-endotoxin decomposed more rapidly than bulk plant C by factors of 1.85 for the fresh plant materials and 3.21 for the post-harvest residues. Within 14 d of incubation, the δ-endotoxin concentration in the residues collected at the soil surface was below the limit of detection. We contrasted the laboratory decomposition data with data from a field experiment to estimate the period that the δ-endotoxin in corn residues may survive in the field. Based on estimates derived from this comparison, we predict that following an October harvest in eastern Ontario the δ-endotoxin would fall below the detection threshold during November for post-harvest residues. Since stabilisation of the δ-endotoxin on soil colloids depends on it surviving (i.e., not being decomposed) for long enough to be released from the plant residue matrix and come into proximity with colloid surfaces, the rapid decay of the δ-endotoxin suggests that only a small fraction of the δ-endotoxin from post-harvest residues persists long enough to become stabilised in the field. Key words: Bt, corn, crop residue decomposition, maize


Sign in / Sign up

Export Citation Format

Share Document