scholarly journals Energy efficiency of technology of cultivation of agricultural crops on the irrigated lands of the South of Ukraine

Author(s):  
R. A. Vozhegova ◽  
◽  
N. M. Galchenko ◽  
D. I. Kotelnikov ◽  
V. M. Мaliarchuk ◽  
...  

The article reflects the results of research on the study of crop rotation productivity and energy efficiency components of crop rotation technology in terms of depending on different methods and depth of basic tillage. The purpose of the research was to determine the impact of basic tillage and fertilization on crop rotation productivity indicators and indicators of economic efficiency of crop rotation technology in irrigated conditions in the south of Ukraine. Methods: the field, in-gravimetric, visual, laboratory, calculation-comparative, mathematically-statistical and confessedly in Ukraine methods and methodical recommendations. The research was conducted during 2016-2019 in the research fields of the Askanian SARS IIA NAAS of Ukraine. Results. The use of differentiated and shallow single-depth system of basic tillage to the same productivity indicators at the level of 8.21 and 8.22 t.o.o./ha of products. However, the use of shallow tillage with different depths increased the productivity to 8.49 tons of water/ha, or 3.3%, and with no-till the lowest productivity was obtained 7.15 tons of water/ha. At the same time, the organo-mineral system of fertilizer N90P40 + green manure + crop residues yielded at the level of 7.61 tons per hectare. The improvement of nitrogen nutrition of crop rotations to N105P40 + green manure to get her with the earning of crop residues increased this figure to 8.06 ton so.o./ha, or 5.9% more than the control. At the same time, the maximum productivity indicators of 8.52 tons per hectare were obtained for the N120P40 system + green manure + post-harvest residues, which is actually 12% more than in the control. The reduction of total energy consumption was obtained with a shallow single-depth system of main cultivation of 26.45 GJ/ha, and the lowest values of 25.27 GJ/ha were obtained with no-till, which is 6.8% less than in the control. Application of organo-mineral fertilizer system N90P40 + green manure + post harvest residues formed costs at the level of 24.94 GJ/ha, increase of nitrogen nutrition of crop rotations to N105P40 + green manure with post harvest residues increased costs to 26.35 GJ/ha, and the highest costs 26.37 GJ/ha was obtained in the variant N120P40 + green manure, where the figures were higher by 11.5% compared to the control. Almost the same energy yield was obtained for differentiated and single-depth shallow tillage systems 127.33 and 127.64 GJha, respectively. The application of the system of multi-depth tillage increased the yield to 133.24 GJ/ha. Conclusion. The calculation of energy efficiency testifies that growing of agricultural cultures at bringing of N120Р40 + green manure + post-harvest residues in the system of the plowless on different depth is most expedient and justified from the power point of view. Technology of growing, which is based on these agrotechnology measures provides the receipt of maximal energy coefficient at the level of 4,96

2018 ◽  
Vol 8 (1) ◽  
pp. 487-497
Author(s):  
А.І. Тsyliuryk ◽  
S.M. Shevchenko ◽  
Ya.V. Ostapchuk ◽  
A.M. Shevchenko ◽  
E.A. Derevenets-Shevchenko

<p>Due to the violation of the technology of sunflower growing in Ukraine and the disbalance of scientifically grounded crop rotation, or their complete absence, with the expansion of sunflower seeds in the structure of crops to 40% and more, and the simplification of the system of basic cultivation of arable land, accompanied by a sharp increase in perturbation of crops by autotrophic and parasitic weeds. To determine the impact of agrotechnical measures, saturation of sunflower seeds, soil tillage systems, and fertilization on the number and species composition of various agrobiological groups of weeds in sunflower crops, including <em>Orobahche cumana</em> Walls. To reduce the herbicide (chemical) loading in agrophytocoenoses of oilseed crops, and ecologization of protection from weeds it was supposed to reveal optimal and environmentally friendly parameters of modern elements of sunflower cultivation technology. The scheme of the experiment included two grains–steam–breeding and grain–seed crop rotations with saturation in the structure of sunflower seeding 12.5%, 20% and 33.3%; three cardinally different systems of basic cultivation of the ground (filed plowing, differentiated and systems of mulching and no-till); two fertilizer systems (no fertilizers + post–harvest residues, N30–60P30–45K30–45 + post–harvest residues). All other elements of agrotechnics were standard and generally accepted for the steppe zone. The accounting of obstinacy was carried out by quantitative–weight and species–specific methods. A tendency has been observed to increase the number of weeds before the first inter–row treatment for mulching and no-till and direct sowing (10.4–15.1 pcs/m<sup>2</sup>) in 1.3–1.5 times compared with the filed plowing (7, 1–12.4 pc. /m<sup>2</sup>). At the time of harvesting in comparison with the spring definition, the infestation of oilseed crop under fertilized background decreased by 1.6–4.2 times; and their quantitative values were 2.6–5.2 pcs/m2 (field plowing), 4.1–8.1 (differentiated tillage), 5.5–12.4 pcs/m<sup>2 </sup>(no-till), indicating the preservation of regularities inherent in the spring period. It was established that the air–dry weight of weeds (within the limits of individual terms of the definition) varied in versions directly proportional to the change in quantitative values, and on average slightly higher for mulching and no-till (3.8–15.7 g/m<sup>2</sup>) than filed plowing (1.8–12.3 g/m<sup>2</sup>). It was proved that the degree of manifestation of the active biological phase of the vaginal parasitism naturally increased with the reduction of the time interval of sunflower return in crop rotation, especially in 3–way crop rotation (33.3% sunflower) – 6.9–12.7%, that is, each sunflower field in the crop rotation – an additional resource for the accumulation of Broomrape in the soil. The increase in the degree of sunflower damage with sunflower wool (up to 11.0–12.7 pcs/100 plants) was observed on the background of deep plowing and decreased with a decrease in the depth of main cultivation in shallow and direct sowing by 6.9–7.8%, or 1.6 times as a result of the localization of the Broomrape in the ground beside the sunflower roots, which provokes its germination with its root secretions, while the seeds of Broomrape for mulching and no-till are located on the top of the soil, soil surface or plant residues, that make impossible its germination in a more dense soil in the absence of the root system of host plant (sunflower). Maximum seed yield (2.35–2.82 t/ha) was obtained in 8–crop rotation at the concentration of sunflower in the seed structure of 12.5%. Extension of the sown area to 25% and 33.3% contributed to a decrease in yields of 2.14–2.67 and 2.10–2.56 t/ha, or 8.9–5.3% and 10.0– 9.2% due to the increase in the degree and intensity of damage to plants by Broomrape. Thus, the expansion in the structure of sunflower crops to 33.3% and the minimization of the main cultivation of the soil leads to an increase in perishability by autotrophic weeds in 1.3–1.5 times, and the degree and intensity of damage by Broomrape, on the contrary, decreases on the finely treated agrofons regarding the localization of seeds in the upper layer of soil or on plant residues, which makes it impossible to germinate.</p>


2017 ◽  
Vol 1 (92) ◽  
pp. 62-68
Author(s):  
R. Holod ◽  
О. Bilinska ◽  
H. Shubala

There were analyzed and disclosed the basic components of arable farming systems and their Meaning, the current state and scientific principles in the context of the further development of field crop cultivation in the conditions of Western Forest-Steppe. The purpose of research. To study an effect of alternation of crop in crop rotation in conditions of brief rotation on the soil water regime, productivity and economic efficiency. Methods. Field, laboratory, comparative and analytical. Results. The results of researches on study of productivity of four-field crop rotations with short rotation depending on their saturation by the grain and tilled cultures, of various use of mineral fertilizers, green manure crops and collateral products which were conducted during 2014-2015 in the stationary experiment of the scientific and technological department of plant growing and arable farming, of the TDSGDS of the IKSGP of NAAN are resulted In the article. The elements of the biologization of farming are the basis of our development of crop rotations with short rotation. The study of the effect of green manure crops and collateral products in four-field crop rotations with a different set of crops on the change of soil fertility and productivity of crop rotations as a whole was carried out to this purpose. According to the results of the research, is provided the information on the effectiveness of improving the field crop rotations with short rotation with varying degrees of saturation by grain and tilled crops, that ensure the production of environmentally friendly products, reducing the cost of grain, improving the quality of marketable products. The study of the effect of alternation of crop in crop rotation in conditions of brief rotation on the soil water regime, productivity and economic efficiency showed that an increase in crop rotation productivity is observed in short-rotation crop rotations, if they are saturated by grain crops up to 100%, cereals crops reduction to 50% in crop rotations contributes to a decrease in crop productivity. Conclusion. Thus, the results of the research showed that with the correct construction of short rotational crop rotations, such problems as rational use of nutrients and soil moisture, control of weeds and pests of agricultural crops, improvement of the physical and chemical properties of the soil, increased efficiency in the use of fertilizers and equipment, Cheapening of the received agricultural product may be solved.


2012 ◽  
Vol 27 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Steven J. Shirtliffe ◽  
Eric N. Johnson

AbstractOrganic farmers in western Canada rely on tillage to control weeds and incorporate crop residues that could plug mechanical weed-control implements. However, tillage significantly increases the risk of soil erosion. For farmers seeking to reduce or eliminate tillage, potential alternatives include mowing or using a roller crimper for terminating green manure crops (cover crops) or using a minimum tillage (min-till) rotary hoe for mechanically controlling weeds. Although many researchers have studied organic crop production in western Canada, few have studied no-till organic production practices. Two studies were recently conducted in Saskatchewan to determine the efficacy of the following alternatives to tillage: mowing and roller crimping for weed control, and min-till rotary hoeing weed control in field pea (Pisum sativum L.). The first study compared mowing and roller crimping with tillage when terminating faba bean (Vicia faba L.) and field pea green manure crops. Early termination of annual green manure crops with roller crimping or mowing resulted in less weed regrowth compared with tillage. When compared with faba bean, field pea produced greater crop biomass, suppressed weeds better and had less regrowth. Wheat yields following pea were not affected by the method of termination. Thus, this first study indicated that roller crimping and mowing are viable alternatives to tillage to terminate field pea green manure crops. The second study evaluated the tolerance and efficacy of a min-till rotary harrow in no-till field pea production. The min-till rotary hoe was able to operate in no-till cereal residues and multiple passes did not affect the level of residue cover. Field pea exhibited excellent tolerance to the min-till rotary hoe. Good weed control occurred with multiple rotary hoe passes, and pea seed yield was 87% of the yield obtained in the herbicide-treated check. Therefore, this second study demonstrated that min-till rotary hoeing effectively controls many small seeded annual weeds in the presence of crop residue and thus can reduce the need for tillage in organic-cropping systems.


2019 ◽  
Vol 20 (5) ◽  
pp. 467-477
Author(s):  
L. M. Kozlova ◽  
E. N. Noskova ◽  
F. A. Popov

The long-term research conducted in 2002-2017 in a long stationary experiment on studying different types of field crop rotations under conditions of the Kirov region showed that on sod-podzolic soils the loss of humus could be lowered using agro technical methods. The most critical of them include the reduction of a portion of bare fallow, transition to sown and green-manure fallow, expanded use of perennial legume and grain-legume crops and intercrop sowings. In eight-field crop rotations when using such means of a biologization as plowing of the root-stubble residues, aboveground mass of green-manure crops in fallow fields and intercrop sowings, the supply of organic substance was within 17.24-83.03 t/ha. By mineral-ization of this substance 7.64-11.51 t of humus were produced. In a crop rotation with bare fallow there is a negative balance of humus of -0.06 t/ha. The positive balance is obtained when using sown, green-manure fallows, intercrop sowings (two-three fields), and introduction of up to 25% perennial legumes to the structure of crop rotations. The formation of 0.96-1.44 t/ha of humus in the arable layer provides positive balance of 0.20-0.72 t/ha. The increase of the part of grain crops up to 62.5-75.0% in the structure of crop rotations resulted in rise of their efficiency up to 4.74-4.79 thousand fodder units. It was 0.27-0.32 thousand fodder units higher than in the control crop rotation with bare fallow. Dependence of productivity of agricultural crops on humus content was insignificantly negative (r = -0.16). The efficiency of the studied crop rotations depended considerably on the amount of productive moisture in the soil in a phase of ear formation of grain crops (r = -0.78) and on biological activity of the soil (r = -0.80).


2019 ◽  
Vol 15 (No. 1) ◽  
pp. 47-54 ◽  
Author(s):  
Mxolisi Mtyobile ◽  
Lindah Muzangwa ◽  
Pearson Nyari Stephano Mnkeni

The effects of tillage and crop rotation on the soil carbon, the soil bulk density, the porosity and the soil water content were evaluated during the 6<sup>th</sup> season of an on-going field trial at the University of Fort Hare Farm (UFH), South Africa. Two tillage systems; conventional tillage (CT) and no-till and crop rotations; maize (Zea mays L.)-fallow-maize (MFM), maize-fallow-soybean (Glycine max L.) (MFS); maize-wheat (Triticum aestivum L.)-maize (MWM) and  maize-wheat-soybean (MWS) were evaluated. The field experiment was a 2 × 4 factorial, laid out in a randomised complete design. The crop residues were retained for the no-till plots and incorporated for the CT plots, after each cropping season. No significant effects (P &gt; 0.05) of the tillage and crop rotation on the bulk density were observed. However, the values ranged from 1.32 to1.37 g/cm<sup>3</sup>. Significant interaction effects of the tillage and crop rotation were observed on the soil porosity (P &lt; 0.01) and the soil water content (P &lt; 0.05). The porosity for the MFM and the MWS, was higher under the CT whereas for the MWM and the MWS, it was higher under the no-till. However, the greatest porosity was under the MWS. Whilst the no-till significantly increased (P &lt; 0.05) the soil water content compared to the CT; the greatest soil water content was observed when the no-till was combined with the MWM rotations. The soil organic carbon (SOC) was increased more (P &lt; 0.05) by the no-till than the CT, and the MFM consistently had the least SOC compared with the rest of the crop rotations, at all the sampling depths (0–5, 5–10 and 10–20 cm). The soil bulk density negatively correlated with the soil porosity and the soil water content, whereas the porosity positively correlated with the soil water content. The study concluded that the crop rotations, the MWM and the MWS under the no-till coupled with the residue retention improved the soil porosity and the soil water content levels the most.


2018 ◽  
Vol 10 (8) ◽  
pp. 341
Author(s):  
Rodrigo Santos Moreira ◽  
Marcio Koiti Chiba ◽  
Isabella Clerici De Maria ◽  
Caio César Zito Siqueira ◽  
Aildson Pereira Duarte ◽  
...  

Soil organic matter is considered a key attribute for a sustainable agricultural production and is influenced by the quantity and quality of the crop residue deposited on the soil surface. Therefore, different crop rotations could change the soil organic matter pools. The objectives of this study were to evaluate the soil carbon pools obtained by chemical and physical fractionation methods and the humification index under different crop rotations in a no-till system. We test the following hypothesis: a) the distribution of C and N among the soil organic matter fractions depends on plant species rotation schemes and; b) labile fractions are more sensitive to the input of crop residues and therefore, more suitable for evaluating the impact of different crop rotations in the soil organic matter quality. We evaluated four crop sequences (corn/corn/corn; corn/wheat/corn; soybean/wheat/corn and soybean/corn/corn) in a no-till system. A five-year reforested area was used as reference. We determined the total C and N contents, the mineral-associated C and N, the light fraction of C and N, the labile carbon extracted with KMnO4 and the soil organic matter humification index. We found narrow differences between the crop rotation systems in the total C and N levels, the mineral-associated C and N fractions and the labile C extracted with KMnO4. The diversification of the agricultural system with soybean in crop rotation favored the accumulation of light fraction C and N in the soil that were more efficient to provide information about the changes in the soil organic matter quality.


2021 ◽  
Vol 13 (4) ◽  
pp. 11035
Author(s):  
Antonina PANFILOVA

The aim of the work was to improve soil fertility and increase the yield of winter wheat using the stubble biodestructor by activating the microbiological activity of the soil. The experimental studies were on the research field of Mykolayiv National Agrarian University (Ukraine). After harvesting the precursor cultures of spring barley and peas the post-harvest residues of these crops were treated with a stubble biodestructor. After treatment of crop residues of spring barley and pea by the stubble biodestructor in the soil layer of 0 up to 20 cm the quantity of cellulose-destructive microorganisms increased by 27.9·105 up to 36.0·105 cfu/g of soil depending on the predecessor culture and the degree of degradation of these residues increased by 31.4 up to 45.1%. The number of nitrogen fixators in the 0-10 cm soil layer grew under the action of treatment of crop residues of spring barley and peas by stubble biodestructor on 13.4 up to 14.1 ·106 cfu/g of soilor 30.3 up to 35.0%. At the same time, a somewhat large number of bacteria in the soil was determined by the processing of post-harvest residues of peas, which was due to the biological characteristics of this legume culture. The average for years of researches at cultivating of winter wheat after spring barley using the stubble biodestructor the grain yield increased by 0.45 t ha–1, or 20.9%, and after pea it increased by 0.67 t ha–1 or 18.8% compared to the treatment variant of stubble just with water.


2020 ◽  
Vol 21 (6) ◽  
pp. 752-763
Author(s):  
A. K. Svechnikov

It is known that significant saving of nitrogen fertilizers are due to perennial legume-cereal grasses use in crop rotations. From 2013 to 2018in the Mari El Republic six-field grass-grain fodder crop rotations were compared on sod-podzolic soils with a very high level of phosphorus and potassium. In the third rotation their productivity and bioenergetic efficiency, changes in several important soil fertility indicators, and crud protein content in the produced fodder were evaluated. The main difference between the crop rotations was based on the duration of the clover-alfalfa-timothy grass mixture (CAG) use: from one year to three years. In given experiment there was also studied the effect of mineral nitrogen (variants N0, N60) against Р60К60 background on the yield of crop rotations. During six years, there was no significant soil acidification in the variants. Each additional year of clover-alfalfa-timothy grass mixture use raised the energy efficiency ratio of crop rotations by 24-47 % (from 1.13-1.24 by one-year use to 2.08-2.25 by three years of use). Three-year CAG use as compared with one- and two-years has given to the crop rotation significant advantages in energy efficiency (up to two times) and productivity (approximately 40-80 %) of cultivated crops. After refusing to apply nitrogen fertilizations in such crop rotation, average crop productivity, soil humus and nitrogen content in the soil were better preserved. The average crude protein content in dry matter of the obtained fodder increased from 12.7 % to 14.6 % when prolonging theca use up to two years. The average energy value of the yield per rotation was recorded low (8.4-8.7 MJ/kg) and did not depend on the studied factors.


2019 ◽  
pp. 40-43
Author(s):  
Valerii Viktorovich Chibis

Results of researches of efficiency in short crop rotation with busy steam are given in this article. Researches were conducted in the Omsk district of the Omsk region on typical black soil, with the maintenance of humus of 6.7% (in a layer of earth of 0-30 cm).  Cultivation of field cultures against the background of application of means of chemicalixation was carried out in a crop rotation the occupied steam (green manure) – wheat – barley – oats. During the conducted researches the quantity and dynamics of moisture, the maintenance of the main macrocells in the soil, and efficiency of all crop rotation was defined. The received results allow to draw a conclusion that in a crop rotation with busy steam and four fields at application of means of chemicalixation the increase of a harvest of the first wheat for 45.2%, barley repeatedly 31.5% and oats for 9.9% is noted. Application of fertilizers, at the rate of N30P30 on 1 hectare of an arable land, and herbicides, provided increase in productivity grain on 0.53 t/hectare, an exit of grain of 0.44 t/hectare, and feed-protein units to 1.29 t/hectare. The resulting materials can be used in the development of crop rotations schemes for forest-steppe of Western Siberia.


Sign in / Sign up

Export Citation Format

Share Document