scholarly journals Influence of stubble biodestructor on soil microbiological activity and grain yield of winter wheat (Triticum aestivum L.)

2021 ◽  
Vol 13 (4) ◽  
pp. 11035
Author(s):  
Antonina PANFILOVA

The aim of the work was to improve soil fertility and increase the yield of winter wheat using the stubble biodestructor by activating the microbiological activity of the soil. The experimental studies were on the research field of Mykolayiv National Agrarian University (Ukraine). After harvesting the precursor cultures of spring barley and peas the post-harvest residues of these crops were treated with a stubble biodestructor. After treatment of crop residues of spring barley and pea by the stubble biodestructor in the soil layer of 0 up to 20 cm the quantity of cellulose-destructive microorganisms increased by 27.9·105 up to 36.0·105 cfu/g of soil depending on the predecessor culture and the degree of degradation of these residues increased by 31.4 up to 45.1%. The number of nitrogen fixators in the 0-10 cm soil layer grew under the action of treatment of crop residues of spring barley and peas by stubble biodestructor on 13.4 up to 14.1 ·106 cfu/g of soilor 30.3 up to 35.0%. At the same time, a somewhat large number of bacteria in the soil was determined by the processing of post-harvest residues of peas, which was due to the biological characteristics of this legume culture. The average for years of researches at cultivating of winter wheat after spring barley using the stubble biodestructor the grain yield increased by 0.45 t ha–1, or 20.9%, and after pea it increased by 0.67 t ha–1 or 18.8% compared to the treatment variant of stubble just with water.

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 586 ◽  
Author(s):  
Kinga Treder ◽  
Magdalena Jastrzębska ◽  
Marta Katarzyna Kostrzewska ◽  
Przemysław Makowski

Earthworm species composition, the density of individuals, and their biomass were investigated in spring barley and faba bean fields in a long-term (52-year) experiment conducted at the Production and Experimental Station in Bałcyny, in north-eastern Poland (53°40′ N; 19°50′ E). Additionally, post-harvest residues biomass, soil organic matter (SOM), and soil pH were recorded. The above traits were investigated using two experimental factors: I. cropping system—continuous cropping (CC) vs. crop rotation (CR) and II. pesticide plant protection: herbicide + fungicide (HF+) vs. no plant protection (HF−). A total of three species of Lumbricidae were found: Aporrectodea caliginosa (Sav.) in both crops, Aporrectodea rosea (Sav.) in spring barley, and Lumbricus terrestris (L.) in faba bean. The density and biomass of earthworms were unaffected by experimental treatments in spring barley fields, whereas in faba bean CC increased and HF+ decreased earthworm density and biomass in comparison with CR and HF− respectively. Total post-harvest residues in faba bean fields were higher under CC in relation to CR and under HF+ compared with HF− treatment in both crops. Compared to CR, CC increased soil pH in spring barley fields and decreased in faba bean fields. Experimental factors did not affect SOM. Earthworm density and biomass were positively correlated with SOM content.


1996 ◽  
Vol 126 (2) ◽  
pp. 191-199 ◽  
Author(s):  
I. K. Thomsen ◽  
B. T. Christensen

SUMMARYIn autumn 1991, sugarbeet tops (Beta vulgaris L.) and different components of oilseed rape residues (Brassica napus L.), both labelled with 15N, were incorporated into the soil under field conditions at Askov Experimental Station, Denmark, using stainless steel cylinders to contain the treatments. The availability of this labelled N to a subsequent crop was measured, using as test crops autumn-sown rye (Secale cereale L.), wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.). In spring 1992, cylinders with 15 N-residues received NH4NO3 and those without 15NH415NO3. In a parallel experiment, 15N-labelled beet tops were incorporated in lysimeters. A four-course rotation of sugarbeet, spring barley (undersown with perennial ryegrass Lolium perenne L.), perennial ryegrass and winter wheat at two rates of calcium ammonium nitrate (CAN) or animal slurry was grown in these lysimeters. Leaching and the availability of beet top N to successive crops were followed for 2 years. The soil in the cylinders and lysimeters was a light sandy loam (˜ 10% clay).Of the 7·10 g N/m2 added in beet tops, 10–15% was harvested in two subsequent crops of barley and ryegrass and 13–19% was lost by nitrate leaching. Beet top N accounted for 3–7% of the total N offtake in 1992. In 1993 < 1·5% of the total N offtake in ryegrass was from the beet tops applied in 1991. Combining results from mineral fertilized treatments, it was found that 9% of the beet top N was removed in the first cereal crop, 9% was lost by nitrate leaching and 68% remained in the 0–20 cm soil layer (including roots), suggesting that the denitrification loss was < 15%.Incorporation of oilseed rape stubble (1·35 g N/m2), two rates of pods (6·25 and 18·75 g N/m2) or mixed residues (12·25 g N/m2) contributed 0·5, 2·3, 7·4 and 4·6%, respectively, to the total N harvested in the following crop of winter wheat. The percentage of the added labelled N taken up by the wheat ranged from 4·9 to 6·1%, with 60–79% remaining in the 0–20 cm layer after harvest.For beet tops it was calculated that 100 kg N/ha in residues incorporated in the autumn could replace 18 kg N/ha given in the following spring as mineral fertilizer. For oilseed residues, the corresponding average value was 9 kg N/ha.In fertilized cropping systems, oilseed rape residues had minor effects on the subsequent crop, so that an uneven return of residues, as often occurs with combined crops, would do little harm. A considerable proportion of the N applied in sugarbeet tops was lost by leaching and the residual value of the sugarbeet tops to subsequent crops was low.


Author(s):  
R. A. Vozhegova ◽  
◽  
N. M. Galchenko ◽  
D. I. Kotelnikov ◽  
V. M. Мaliarchuk ◽  
...  

The article reflects the results of research on the study of crop rotation productivity and energy efficiency components of crop rotation technology in terms of depending on different methods and depth of basic tillage. The purpose of the research was to determine the impact of basic tillage and fertilization on crop rotation productivity indicators and indicators of economic efficiency of crop rotation technology in irrigated conditions in the south of Ukraine. Methods: the field, in-gravimetric, visual, laboratory, calculation-comparative, mathematically-statistical and confessedly in Ukraine methods and methodical recommendations. The research was conducted during 2016-2019 in the research fields of the Askanian SARS IIA NAAS of Ukraine. Results. The use of differentiated and shallow single-depth system of basic tillage to the same productivity indicators at the level of 8.21 and 8.22 t.o.o./ha of products. However, the use of shallow tillage with different depths increased the productivity to 8.49 tons of water/ha, or 3.3%, and with no-till the lowest productivity was obtained 7.15 tons of water/ha. At the same time, the organo-mineral system of fertilizer N90P40 + green manure + crop residues yielded at the level of 7.61 tons per hectare. The improvement of nitrogen nutrition of crop rotations to N105P40 + green manure to get her with the earning of crop residues increased this figure to 8.06 ton so.o./ha, or 5.9% more than the control. At the same time, the maximum productivity indicators of 8.52 tons per hectare were obtained for the N120P40 system + green manure + post-harvest residues, which is actually 12% more than in the control. The reduction of total energy consumption was obtained with a shallow single-depth system of main cultivation of 26.45 GJ/ha, and the lowest values of 25.27 GJ/ha were obtained with no-till, which is 6.8% less than in the control. Application of organo-mineral fertilizer system N90P40 + green manure + post harvest residues formed costs at the level of 24.94 GJ/ha, increase of nitrogen nutrition of crop rotations to N105P40 + green manure with post harvest residues increased costs to 26.35 GJ/ha, and the highest costs 26.37 GJ/ha was obtained in the variant N120P40 + green manure, where the figures were higher by 11.5% compared to the control. Almost the same energy yield was obtained for differentiated and single-depth shallow tillage systems 127.33 and 127.64 GJha, respectively. The application of the system of multi-depth tillage increased the yield to 133.24 GJ/ha. Conclusion. The calculation of energy efficiency testifies that growing of agricultural cultures at bringing of N120Р40 + green manure + post-harvest residues in the system of the plowless on different depth is most expedient and justified from the power point of view. Technology of growing, which is based on these agrotechnology measures provides the receipt of maximal energy coefficient at the level of 4,96


2021 ◽  
Vol 344 (1) ◽  
pp. 121-124
Author(s):  
E. V. Seminchenko

Among the methods of cultivation that increase the productivity of crops, a prominent role is assigned to crop rotation. In a properly constructed crop rotation, the efficiency of all agrotechnical methods aimed at improving the use of land increases, the biological needs of crops are satisfied, the rational use of technology is achieved, and the cost of production is reduced [1]. The soils are low in nitrogen, medium in phosphorus and high in potassium. The humus content is 1.2–2.0%, pH = 7–8. Studies have shown that green manure (sweet clover, oats, phacelia) have a positive effect on the balance of organic matter. The negative balance of organic matter is noted for pure steam. The stock of productive moisture in the 0–0.3 cm soil layer varied from 4.1 to 29.5 mm for winter wheat, 28.1–32.7 mm for chickpea and 28–35.3 mm for spring barley, depending on the weather conditions. conditions and methods of biologization. On average, over three years, the highest yield was in winter wheat for a busy fallow (phacelia) and amounted to 1.0 t/ha, which depended on weather conditions. A reliable correlation was revealed for the factors of yield-precipitation; temperature; batteries, etc.


2020 ◽  
Vol 113 (3) ◽  
pp. 1315-1322 ◽  
Author(s):  
David Francis Cook ◽  
Robert A Deyl ◽  
Jeremy B Lindsey ◽  
Mario F D’Antuono ◽  
Donald V Telfer ◽  
...  

Abstract Stable fly (Stomoxys calcitrans L.) remain a significant pest affecting livestock and rural communities on the Swan Coastal Plain around Perth, Western Australia. Vegetable crop residues remaining after harvest enable stable fly development. Left untreated they can produce from several hundred to &gt;1,000 stable fly/m2 of post-harvest residues. We studied the effect of burial and compaction of sandy soils on adult emergence of stable fly and house fly (Musca domestica L.) (Diptera: Muscidae). Adults of both fly species can move up through 50 cm of loose, dry sand, however at depths greater than 60 cm, emergence rapidly declines with &lt;5% of adults surviving under 100 cm of soil. Burial of stable fly larvae and pupae under 15 cm of soil followed by compaction using a static weight dramatically reduced adult emergence. Moist soil compacted at ≥3 t/m2 completely prevented stable fly emergence whereas house fly emergence was not affected. One t/m2 of compaction resulted in &lt;5% emergence of stable fly buried as pupae. Soil that was easily compactible (i.e., high silt, fine sand and clay content) reduced stable fly emergence more than soil with more coarse sand and low clay content. This study demonstrates the potential for a novel and chemical-free option for controlling stable fly development from vegetable crop post-harvest residue. Field trials are needed to confirm that burial and compaction of vegetable post-harvest residues using agricultural machinery can dramatically reduce the subsequent emergence of adult stable fly on a large scale.


Author(s):  
А.А. Гусейнов ◽  
Г.Н. Гасанов ◽  
М.А. Арсланов ◽  
Х.М. Мирзаева

Исследования проведены в 2013–2015 годах в ООО «Вымпел 2002» в Хасавюртовском районе Республики Дагестан. Почва экспериментального участка содержит в пахотном слое гумуса 2,77%, Р2О5 — 2,21 мг, К2О — 32,8 мг/100 г почвы, плотность в пахотном слое — 1,24 г/см3, наименьшая влагоёмкость слоя 0–0,6 м — 29,2%. Целью наших исследований являлось выявление влияния возраста люцерны на накопление общей и неотчуждаемой из почвы органической массы в зернокормовом севообороте в условиях Западного Прикаспия. Рассмотрено два севооборота (с двухлетней и трёхлетней люцерной), по пласту и обороту пласта выращивали озимую пшеницу, после уборки которой в пожнивный период с помощью провокационного полива формировали пожнивный естественней фитоценоз (ПЕФ). Степень насыщения севооборотов люцерной составляла соответственно 50 и 60,0%, озимой пшеницей + ПЕФ — 60,0 и 40%. Установлено, что увеличение срока использования люцерны в зернотравяных севооборотах с 2 до 3 лет и доли её в структуре посевных площадей с 50 до 60% способствовало увеличению сборов сена с 1 га севооборотной площади на 2,57 т/га (на 19,0%), зерна озимой пшеницы по пласту — на 7,9%, по обороту пласта — на 6,5%, надземной массы ПЕФ — на 5,3 и 5,1% соответственно. Одновременно увеличивалось и количество накапливаемой растительной массы с 71,56 до 92,66 т/га севооборотной площади. Но в том случае, когда люцерна в севообороте использовалась 2 года, а доля озимой пшеницы с последующим использованием пожнивного периода под ПЕФ увеличивалась с 40 до 50% севооборотной площади, неотчуждаемой из почвы растительной массы накапливалось больше на 20,2%. Заслуживает уточнения в методическом плане вопрос об отнесении части урожая сена люцерны, произведённого в хозяйстве, к неотчуждаемой из почвы продукции подобно тому, как это делается в отношении соломы, только 60% которой считается экосистемной. The investigation took place at the OOO “Vympel 2002” in the Khasavyurt district of the Republic of Dagestan in 2013–2015. Soil of the trial field contained 2.77% of humus, Р2О5 — 2.21 mg, К2О — 32.8 mg/100 g of soil, layer density — 1.24 g/cm3, the lowest moisture content of the 0–0.6 m layer — 29.2%. The aim was to test the effect of alfalfa age on the accumulation of total and soil organic mass in grain crop rotation in the Western Caspian region. Two crop rotations were studied (two- and three-year old alfalfa). After harvesting winter wheat the plot was irrigated to form post-harvest natural phytocenosis. Alfalfa proportion amounted to 50 and 60%, winter wheat + post-harvest natural phytocenosis — 60 and 40%. Cultivation of alfalfa for 3 years instead of 2 and increase in its proportion from 50 to 60% improved hay yield by 2.57 t ha-1 (19%), wheat grain yield — by 7.9 and 6.5%, top mass of post-harvest natural phytocenosis — by 5.3 and 5.1%, respectively. Plant mass increased from 71.56 to 92.66 t ha-1. When alfalfa was cultivated for 2 years and winter wheat proportion raised from 40 to 50%, accumulation of soil organic matter improved by 20.2%. Attributing part of alfalfa hay to soil organic matter was performed the same way as for straw, only 60% of which belonged to an ecosystem.


2002 ◽  
Vol 139 (3) ◽  
pp. 307-318 ◽  
Author(s):  
P. M. HANSEN ◽  
J. R. JØRGENSEN ◽  
A. THOMSEN

By providing both spatial and temporal information remote sensing may function as an important source of data for site-specific crop management. This technology has been used for nitrogen application strategies to obtain optimum yield and grain quality. Here, the objective was to use early repeated remotely sensed multi-spectral data to predict grain yield and quality for winter wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.). The crops were sown with two different seeding rates and a wide range of nitrogen strategies were applied. Multi-way partial least squares regression (N-PLS) was used to predict grain yield and protein content. The results were compared with unfold-PLS1 and PLS1 using reflectance data from the last measurement day. Both single reflectance wavelengths and selected vegetation indices were used simultaneously. The results reveal that all models can make a good prediction of yield in both crops with unfold-PLS1 and N-PLS as the best. However, estimation of grain protein content at harvest was very poorly determined in barley, as no relation between the reflectance measurements and barley protein content was obtained. The relation between reflectance measurements and protein content was slightly better in wheat, where especially N-PLS improved the prediction of grain protein content. The overall conclusion of the present experiments is that data from repeated measurements of reflectance used in multi-way partial least squares regression before heading improved the prediction of grain yield and protein content in wheat and barley.


2011 ◽  
Vol 52 (No. 5) ◽  
pp. 211-219 ◽  
Author(s):  
M. Váňová ◽  
S. Palík ◽  
J. Hajšlová ◽  
I. Burešová

Effects of the year, previous crop and control of leaf diseases on grain yield, test weight, protein and starch content, Fusarium head blight (FHB) and deoxynivalenol (DON) content in grain were investigated in four spring barley varieties. The trials were set up in 2001&ndash;2004 at Kroměř&iacute;ž (235 m above sea level, average annual temperature 8.7&deg;C, annual precipitation sum 599 mm) in a five-course crop rotation, where spring barley followed the previous crops sugar beet, winter wheat, maize, and oilseed rape. The experimental years differed a lot in temperature and precipitation. The years 2001 and 2002 were dry and warm and grain yield was much lower as compared to that in the following years even though the other growing conditions were identical. The most stable quality parameters were obtained after the previous crop sugar beet. The average value of test weight was 661 g/l(ranging from 629 to 685 g/l), protein content 11.2% (10.3&ndash;11.7%) and starch content 61.5% (58.9&ndash;64.9%). Grain yield averaged 6.67 t/ha. Test weight after maize was on average 658 g/l(619&ndash;692 g/l), protein content 11.5% (10.1&ndash;12.4%), starch content 60.7% (59.2&ndash;63.8%), and grain yield 6.24 t/ha. Test weight and starch content were lower and protein content higher after oilseed rape and winter wheat. A higher FHB incidence and DON content were found after the previous crop maize. In 2001 and 2002 with strong water deficit during the growing seasons, more grains infected by Fusarium spp. were detected and DON content was higher too. The increase was due to a short rainy period at heading of spring barley. Problems of variable conditions for growing malting varieties of spring barley and current possibilities of producing both good grain yields and quality are discussed.


Author(s):  
А. Д. Гирка ◽  
І. О. Кулик ◽  
О. Г. Андрейченко

Представлені результати вивчення впливу застосування мікродобрив на урожайність вівса та ячменю ярого в північному Степу. Встановлено, щокомплексне застосування мікродобрив за обробки насіння та обприскування посівів забезпечує підвищення врожайності вівса на 10 %, ячменю – на 15 % залежно від попередника. Виявлено, що більш адаптованим до посушливих умов є овес: він забезпечив на 0,72 т/га (30,9 %) більшу врожайністьпорівняно з ячменем. Кращим попередником для згаданих культур є пшениця озима, вирощування після якої забезпечувало формування врожайностізерна вівса на 10,1 та 18,1 %, а ячменю – на 20,4 та 23,7 % більше, ніж після кукурудзи МВС та соняшника відповідно. The results of studying the influence of the use of fertilizers on crop yield of oats and spring barley in the Northern Steppe. It is established, that a complex application of micro seed treatment and spraying of crops provides increased productivity of oats by 10%, barley – 15% depending on the predecessor. Found that more adapted to arid conditions are oats that provided by 0.72 t per ha (30.9%) higher yield than barley. The best predecessor for these crops are winter wheat, cultivation after which ensured grain yield formation of oats by 10.1 and 18.1%, and barley – by 20.4 and 23.7% more than after maize for forage and sunflower respectively.


1982 ◽  
Vol 30 (1) ◽  
pp. 25-46
Author(s):  
G. Fischbeck

Grain yield of winter wheat in a given yr varied between 3.19 and 5.85 t/ha and between 3.2 and 4.7 t in 2 sets of data compiled in 1969-79 and 1972-8, respectively. no single factor including soil type, cv., preceding crop or N application was responsible for the yield differences. Variance for yr X location was responsible for 50% of grain yield variation in a series of field trials; cv.-specific crop management was only important at high yield levels. Preventive application of fungicides against major diseases increased the av. grain yield of 16 wheat cv. by 1.38 t. From trials in 1976-80 with winter wheat and spring barley, the number of grains/m2 was the most important criteron differentiating yield between and within the crops. Correlation between grain number and yield decreased as yield increased but 1000-grain wt. compensated for this effect. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document