Polyphenol, vitamin C, caffeine, protein, ash, free fatty acid and peroxide profiles of green tea-based yoghurts

2019 ◽  
Vol 6 (3-4) ◽  
pp. 251-268
Author(s):  
Abiodun A. Olapade ◽  
◽  
Ghaniyah Odunola Ajibola ◽  
Shamsideen Olusegun Aroyeun ◽  
◽  
...  
2004 ◽  
Vol 30 (5) ◽  
pp. 433-439 ◽  
Author(s):  
M Bayerle-Eder ◽  
J Pleiner ◽  
F Mittermayer ◽  
G Schaller ◽  
M Roden ◽  
...  

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 990
Author(s):  
Mifetika Lukitasari ◽  
Mohammad Saifur Rohman ◽  
Dwi Adi Nugroho ◽  
Mukhamad Nur Kholis ◽  
Nila Aisyah Wahyuni ◽  
...  

Background: Insulin resistance has been independently associated with cardiac diseases. A free fatty acid is recently known to induce cardiac insulin resistance due to low-grade inflammation. Therefore, the improvement of free fatty acid levels can also improve cardiac insulin resistance. This study investigated the combination of green tea and decaffeinated-light roasted green coffee extract in improvement of free fatty acid-induced cardiac insulin resistance by improving the adiponectin/FAS pathway. Methods: This study used 25 males Sprague-Dawley rats induced by a high-fat high sucrose diet and injection of low dose streptozotocin to make a metabolic syndrome (MS) rat model and standard chow as healthy control rats. The MS rats were treated with green tea (200 mg/ b. w.), decaffeinated-light roasted green coffee (300 mg/ b. w.), and the combination of both extracts in 9 weeks. Experimental groups in this study were divided into 5 groups: 1) MS (HFHS diet + STZ) group, 2) NC (normal chow) group, 3) GT (green tea extract) group, 4) GC (decaffeinated-light roasted green coffee extract), 5) CM (combination of both extracts) group. Adiponectin and HOMA-IR level was analysed using ELISA, and the gene expression of Adipo-R1, FAS, PI3K, PDK1, Akt, GLUT4 was measured by RT-PCR. Results: The combination of green tea and decaffeinated-light roasted green coffee showed synergistic effects in improving FFA levels. The adiponectin/FAS pathway was attenuated in the CM group. Moreover, the combination also showed improvement in cardiac insulin resistance markers such as IRS1/2, PI3K, PDK1, Akt, and GLUT4. Conclusions:  The combination of green tea and decaffeinated-light roasted green coffee extract improved cardiac insulin resistance better than green tea and green coffee extract administration alone by reducing free fatty acids levels through adiponectin/FAS pathway modulation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ruokun Yi ◽  
Min Feng ◽  
Qiuping Chen ◽  
Xingyao Long ◽  
Kun-Young Park ◽  
...  

Chinese Sichuan pickle is a fermented food rich in microorganisms. Microorganisms have the potential to become an important new form of potent future therapeutic capable of treating human disease. Selecting vitamin C as a positive control, a lactic acid bacteria (Lactobacillus plantarum CQPC02, LP-CQPC02) isolated from Sichuan pickle was given to mice over 4 weeks to investigate the effect of CQPC02 on fatigue levels and biochemical oxidation phenomena in exercise-exhausted Institute of Cancer Research (ICR) mice. The fatigue model was established by forced swimming of mice, the levels of hepatic glycogen, skeletal muscle glycogen, lactic acid, blood urea nitrogen and free fatty acid were measured by physicochemical methods, serum serum creatine kinase (CK), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels were measured by kits, the histopathological changes in the livers of mice were observed by H&E slicing, and the mRNA changes in the livers and skeletal muscles were observed by quantitative polymerase chain reaction (qPCR). Both vitamin C and LP-CQPC02 increased swimming exhaustion time. The concentration of LP-CQPC02 and exhaustion time were positively correlated. LP-CQPC02 also increased liver glycogen, skeletal muscle glycogen and free fatty acid content in mice and reduced lactic acid and blood urea nitrogen content in a dose-dependent manner. As walnut albumin antioxidant peptide concentration increased, levels of mouse CK, AST, and AST gradually decreased. LP-CQPC02 increased SOD and CAT levels and decreased MDA levels in a dose-dependent fashion. LP-CQPC02 up-regulated expression of mRNA encoding copper/zinc-superoxide dismutase (Cu/Zn-SOD), manganese-superoxide dismutase (Mn-SOD), and CAT in swimming exhaustion mouse liver tissue. LP-CQPC02 also up-regulated alanine/serine/cysteine/threonine transporter 1 (ASCT1) expression while down-regulating syncytin-1, inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α) expression in swimming exhaustion mouse skeletal muscle. Overall, LP-CQPC02 had a clear anti-fatigue and anti-oxidation effect. This suggests that LP-CQPC02 can be developed as a microbiological therapeutic agent.


Diabetes ◽  
1988 ◽  
Vol 37 (8) ◽  
pp. 1020-1024 ◽  
Author(s):  
G. M. Reaven ◽  
C. Hollenbeck ◽  
C. Y. Jeng ◽  
M. S. Wu ◽  
Y. D. Chen

Diabetes ◽  
1995 ◽  
Vol 44 (9) ◽  
pp. 1038-1045 ◽  
Author(s):  
K. Rebrin ◽  
G. M. Steil ◽  
L. Getty ◽  
R. N. Bergman

Sign in / Sign up

Export Citation Format

Share Document