scholarly journals Bipolar resistive switching on Ti/TiO2/NiCr memory cells

2017 ◽  
Vol 30 (4) ◽  
pp. 65-68
Author(s):  
Eric Hernandez Rodriguez ◽  
Alfredo Marquez Herrera ◽  
Miguel Melendez Lira ◽  
Enrique Valaguez Velazquez ◽  
Martin Zapata Torres

We investigated the electric-field-induced resistance-switching behavior of metal-insulator-metal (MIM) cells based on TiO2 thin films fabricated by the reactive RF-sputtering technique. MIM cells were constructed by sandwiched TiO2 thin films between a pair of electrodes; Ti thin films were employed to form an ohmic bottom contact and NiCr thin films were employed to form Schottky top electrodes obtaining Ti/TiO2/NiCr MIM cells. Schottky barrier height for the TiO2/NiCr junction was determined according to the thermionic emission model by using the Cheung´s functions. SEM and Raman analysis of the TiO2 thin films were carried out to ensure the quality of the films. Current-Voltage (I-V) sweeps obtained at room temperature by the application of dc bias showed a bipolar resistive switching behavior on the cells. Both low resistance state (ON state) and high resistance state (OFF state), of Ti/TiO2/NiCr cells are stable and reproducible during a successive resistive switching. The resistance ratio of ON and OFF state is over 103 and the retention properties of both states are very stable after 105 s with a voltage test of 0.1 V.

Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 318
Author(s):  
Lin ◽  
Wu ◽  
Chen

: In this work, the resistive switching characteristics of resistive random access memories (RRAMs) containing Sm2O3 and V2O5 films were investigated. All the RRAM structures made in this work showed stable resistive switching behavior. The High-Resistance State and Low-Resistance State of Resistive memory (RHRS/RLRS) ratio of the RRAM device containing a V2O5/Sm2O3 bilayer is one order of magnitude higher than that of the devices containing a single layer of V2O5 or Sm2O3. We also found that the stacking sequence of the Sm2O3 and V2O5 films in the bilayer structure can affect the switching features of the RRAM, causing them to exhibit both bipolar resistive switching (BRS) behavior and self-compliance behavior. The current conduction mechanisms of RRAM devices with different film structures were also discussed.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950023
Author(s):  
Mei Ji ◽  
Yangjiang Wu ◽  
Zhengzhong Zhang ◽  
Ya Wang ◽  
Hao Liu

In this paper, we report the bipolar resistive switching behaviors in Ag/Sm2O3/Pt structures where the Sm2O3 thin films act as solid electrolyte layer of electrochemical metallization memory (ECM) devices. The memory devices show reproducible and stable bipolar resistive switching over 1000 cycles with a resistance ratio (high-resistance state to low-resistance state) of over 4 orders of magnitude and stable retention for over 104[Formula: see text]s at room temperature. Moreover, the benefits of high yield and multilevel storage possibility make the device promising in the next generation non-volatile memory application.


2020 ◽  
Vol 10 (5) ◽  
pp. 622-630
Author(s):  
C.S. Dash ◽  
A. Sivasubramanian ◽  
S.R.S. Prabaharan

Introduction: We report here our success in developing a flexible RRAM stack structure by employing a low-cost method. Bare conductive commercial electric paint is used as anode against Stainless Steel (SS) foil deposited with Mn3O4 thin films forming a BCEP/Mn3O4/SS thin film stack to understand the intrinsic non-volatile resistive switching behavior of Mn3O4. Experimental: Thin film Mn3O4 is deposited on a SS (304) foil by means of potential sweep voltammetry by maintaining typical conditions. Interestingly, the pristine device is subjected to an electroforming process which exhibited a digital type bipolar resistive switching characteristics. The study of the conduction mechanism revealed that the resistive switching arises due to local effect occurring in the bulk of Mn3O4, which corresponds to the growth and annihilation of oxygen vacancy nanofilaments, and this is responsible for the change in resistance state of the RRAM between Low Resistance State (LRS) and High Resistance State (HRS) respectively. Results: In order to affirm the reliability and reproducibility of RRAM structure, the memory retention is monitored over 103 s and subsequently, the endurance test is also carried out ensuring the reproducibility over 100 cycles. Conclusion: Owing to the flexible nature of BCEP/Mn3O4/SS Foil RRAM stack structure, it is perceived to be a prime candidate for future non-volatile memory and flexible electronics applications.


2007 ◽  
Vol 124-126 ◽  
pp. 603-606
Author(s):  
Sang Hee Won ◽  
Seung Hee Go ◽  
Jae Gab Lee

Simple process for the fabrication of Co/TiO2/Pt resistive random access memory, called ReRAM, has been developed by selective deposition of Co on micro-contact printed (μ-CP) self assembled monolayers (SAMs) patterns. Atomic Layer Deposition (ALD) was used to deposit TiO2 thin films, showing its ability of precise control over the thickness of TiO2, which is crucial to obtain proper resistive switching properties of TiO2 ReRAM. The fabrication process for Co/TiO2/Pt ReRAM involves the ALD of TiO2 on sputter-deposited Pt bottom electrode, followed by μ-CP with SAMs and then selective deposition of Co. This results in the Co/TiO2/Pt structure ReRAM. For comparison, Pt/TiO2/Pt ReRAM was produced and revealing the similar switching characteristics as that of Co/TiO2/Pt, thus indicating the feasibility of Co replacement with Pt top electrode. The ratios between the high-resistance state (Off state) and the low-resistance state (On state) were larger than 102. Consequently, the selective deposition of Co with μ-CP, newly developed in this study, can simplify the process and thus implemented into the fabrication of ReRAM.


2016 ◽  
Vol 19 (2) ◽  
pp. 92-100
Author(s):  
Ngoc Kim Pham ◽  
Thang Bach Phan ◽  
Vinh Cao Tran

In this study, we have investigated influences of the thickness on the structure, surface morphology and resistive switching characteristics of CrOx thin films prepared by using DC reactive sputtering technique. The Raman and FTIR analysis revealed that multiphases including Cr2O3, CrO2, Cr8O21... phases coexist in the microstructure of CrOx film. It is noticed that the amount of stoichiometric Cr2O3 phase increased significantly as well as the surface morphology were more visible with less voids and more densed particles with larger thickness films. The Ag/CrOx/FTO devices exhibited bipolar resistive switching behavior and high reliability. The resistive switching ratio has decreased slightly with the thickness increments and was best achieved at CrOx – 100 nm devices.


2010 ◽  
Vol 10 (1) ◽  
pp. e71-e74 ◽  
Author(s):  
Young Ho Do ◽  
June Sik Kwak ◽  
Yoon Cheol Bae ◽  
Jong Hyun Lee ◽  
Yongmin Kim ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (48) ◽  
pp. 2601-2607
Author(s):  
Toshiki Miyatani ◽  
Yusuke Nishi ◽  
Tsunenobu Kimoto

ABSTRACTImpacts of a forming process on bipolar resistive switching (RS) characteristics in Pt/TaOx/Ta2O5/Pt cells were investigated. We found that the forming resulted in a transition from an initial state to a particular high resistance state (HRS) in most of the Pt/TaOx/Ta2O5/Pt cells. Evaluation of electrical characteristics after the transition to the particular HRS revealed that two modes of bipolar RS with the conventional polarity based on valence change mechanism and with the opposite polarity could be selectively obtained by adjusting the magnitude of the applied voltage. Moreover, the cell resistance decreased gradually during set processes in the bipolar RS with the opposite polarity.


2010 ◽  
Vol 97 (23) ◽  
pp. 232904 ◽  
Author(s):  
Jung Ho Yoon ◽  
Kyung Min Kim ◽  
Min Hwan Lee ◽  
Seong Keun Kim ◽  
Gun Hwan Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document