APPLICATION OF ATOMIC SPECTROSCOPY TO MEASURING STRONG INHOMOGENEOUS MAGNETIC FIELDS

2021 ◽  
Vol 88 (6) ◽  
pp. 829-835
Author(s):  
A. Sargsyan ◽  
А. Sarkisyan ◽  
A. Tonoyan ◽  
D. Sarkisyan

Using the spectrum of selective reflection (SR) of laser radiation from the boundary of the surface of the dielectric window of the spectroscopic nanocells – pairs of rubidium atoms, the value of the magnetic field applied to the nanocell is measured. A method is proposed for calculating the magnetic induction B in the range of 0.1–6.0 kG based on the ratio of the frequency intervals between atomic transitions, which greatly simplifies the determination of B, particularly, there is no need for a reference spectrum at B = 0. To implement the SR process a 300-nm column of vapors of Rb atoms is used, and atomic transitions with a sub- Doppler spectral width of 80–90 MHz are formed. This leads to frequency separation of transitions in SR spectrum that is important for the proposed method. SR spectrum can be analyzed using a specially designed computer program that accelerates the data processing. The small thickness of the vapor column allows high spatial resolution, which is important in the case of inhomogeneous magnetic fields.

2016 ◽  
Vol 699 ◽  
pp. 31-36 ◽  
Author(s):  
Eduard Chirila ◽  
Ionel Chirica ◽  
Doina Boazu ◽  
Elena Felicia Beznea

The paper addresses the study of the damping characteristics estimation and behaviour of the magnetorheological elastomers (MREs) in the absence of magnetic field. This type of material actively changes the size, internal structure and viscoelastic characteristics under the external influences. These particular composite materials whose characteristics can vary in the presence of a magnetic fields are known as smart materials. The feature which causes the variation of properties in magnetic fields is explained by the existence of polarized particles which change the material form by energy absorbing. Damping is a special characteristic that influences the vibratory of the mechanical system. As an effect of this property is the reducing of the vibration amplitudes by dissipating the energy stored during the vibratory moving. The main characteristic that is based on the determination of the damping coefficient is the energy loss, which is the subject of the present paper. Before to start the characteristics determination in the presence of the magnetic field, it is necessary to study these characteristics in the absence of magnetic field. The MRE specimens have been manufactured and tested under the light conditions (non magnetic field). A special experimental test rig was built to investigate the response of the MRE specimens under the charging force. The experimental results show that the loss energy of the MRE specimen can be determined from the charging-discharging curves versus displacement. The results of the MRE specimen are presented in this paper: MRE with feromagnetic particles not exposed in magnetic field during fabrication.


1990 ◽  
Vol 140 ◽  
pp. 269-279
Author(s):  
Telemachos Ch. Mouschovias

The formation of cloud cores (or fragments) and their evolution into protostars are the inevitable outcome of the struggle between gravity and magnetic fields, with ambipolar diffusion as the agent employed to weaken gravity's fierce opponent. The very specific and crucial role of magnetic fields in star formation deduced from detailed quantitative calculations is summarized. Criteria for collapse against magnetic and thermal-pressure forces are given. Magnetic braking time scales for both aligned and perpendicular rotators, and ambipolar diffusion time scales in both quasistatically and dynamically contracting cores are presented, and their implications are discussed. The possible role of magnetic fields in the determination of the initial (stellar) mass function (IMF) is beginning to emerge. New calculations on the axisymmetric collapse of clouds due to ambipolar diffusion reveal that the relation Bc ∞ ρc1/2 between the magnetic field strength and the gas density in typical cloud cores holds even in the presence of ambipolar diffusion up to densities ~ 109 cm−3. Small masses, high densities, and strong fields observed in H2O masers are consistent with theoretical calculations.


2020 ◽  
Vol 640 ◽  
pp. A4 ◽  
Author(s):  
T. Felipe ◽  
C. R. Sangeetha

Context. In stratified atmospheres, acoustic waves can only propagate if their frequency is higher than the cutoff value. The determination of the cutoff frequency is fundamental for several topics in solar physics, such as evaluating the contribution of the acoustic waves to the chromospheric heating or the application of seismic techniques. However, different theories provide different cutoff values. Aims. We developed an alternative method to derive the cutoff frequency in several standard solar models, including various quiet-Sun and umbral atmospheres. The effects of magnetic field and radiative losses on the cutoff are examined. Methods. We performed numerical simulations of wave propagation in the solar atmosphere using the code MANCHA. The cutoff frequency is determined from the inspection of phase-difference spectra computed between the velocity signal at two atmospheric heights. The process is performed by choosing pairs of heights across all the layers between the photosphere and the chromosphere to derive the vertical stratification of the cutoff in the solar models. Result. The cutoff frequency predicted by the theoretical calculations departs significantly from the measurements obtained from the numerical simulations. In quiet-Sun atmospheres, the cutoff shows a strong dependence on the magnetic field for adiabatic wave propagation. When radiative losses are taken into account, the cutoff frequency is greatly reduced and the variation of the cutoff with the strength of the magnetic field is lower. The effect of the radiative losses in the cutoff is necessary to understand recent quiet-Sun and sunspot observations. In the presence of inclined magnetic fields, our numerical calculations confirm that the cutoff frequency is reduced as a result of the reduced gravity experienced by waves that propagate along field lines. An additional reduction is also found in regions with significant changes in the temperature, which is due to the lower temperature gradient along the path of field-guided waves. Conclusions. Our results show solid evidence that the cutoff frequency in the solar atmosphere is stratified. The cutoff values are not correctly captured by theoretical estimates. In addition, most of the widely used analytical cutoff formulae neglect the effect of magnetic fields and radiative losses, whose role is critical for determining the evanescent or propagating nature of the waves.


1993 ◽  
Vol 157 ◽  
pp. 317-319
Author(s):  
Richard Wielebinski

New radio continuum surveys allowed the determination of the magnetic field in the Large Magellanic Cloud. The magnetic field is filamentary, extending to the south of the 30 Doradus nebula. Some possible explanations for this unusual morphology are discussed.


2013 ◽  
Vol 9 (S301) ◽  
pp. 197-204 ◽  
Author(s):  
Hideyuki Saio

AbstractSome Ap stars with strong magnetic fields pulsate in high-order p modes; they are called roAp (rapidly oscillating Ap) stars. The p-mode frequencies are modified by the magnetic fields. Although the large frequency separation is hardly affected, small separations are modified considerably. The magnetic field also affects the latitudinal amplitude distribution on the surface. We discuss the properties of axisymmetric p-mode oscillations in roAp stars.


2021 ◽  
Vol 12 (1) ◽  
pp. 7-12
Author(s):  
V. M. Fedosyuk

The permanent magnetic field in addition to electromagnetic radiation has a significant effect on performance of devices. This is particularly true for highly sensitive precision measuring equipment, such as, for example, magnetometers or photomultiplier tubes. In this regard a new high-performance materials for protection against permanent fields and electromagnetic radiation need to be developed. The purpose of this paper is a development of a hardware and software complex for high-precision determination of permanent magnetic field attenuation coefficient and certification of protective materials.This paper describes an experimental installation for determining the attenuation coefficient of a permanent magnetic field using materials and coatings on standard package for electronic equipment. The installation ensures a uniform magnetic field flow in the measurement volume. The advantage of the measuring device is the ability to measure magnetic field in three coordinates due to the use of three pairs of Helmholtz coils and a three-dimensional Hall sensor. The software will enable to control of the magnetic field in all three directions, simulating the real operating conditions of devices that require protection from such influences. In addition, a movable positioning system makes it possible to compensate for the Earth's magnetic field, which increases the accuracy of estimating the attenuation coefficient by protective materials in weak magnetic field.An alternative use of the capabilities of the installation is to test the performance of the devices in a permanent magnetic field and evaluate the electromagnetic compatibility. Experimental results of the work includes determination of the magnetic field attenuation coefficient using standard photomultiplier tube package made of electrolytically deposited permalloy and the sheet of annealed permalloy. Thus, the effect of annealing and closed magnetic circuit on the degree of weakening of the magnetic field is shown. It has been demonstrated that annealing which causes a significant increase in the magnetic permeability promotes an effective attenuation of weak magnetic fields (up to 1 mT). In magnetic fields with an induction of 1 mT or more, effective attenuation is provided by a closed magnetic circuit.


2016 ◽  
Author(s):  
P. P. Zacharias ◽  
E. G. Chatzineofytou ◽  
S. T. Spantideas ◽  
C. N. Capsalis

Abstract. In the present work, the determination of the magnetic behavior of localized magnetic sources from near field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an EUT consisting of multiple AC magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are stud ied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high SNR. Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.


2019 ◽  
Vol 127 (9) ◽  
pp. 389
Author(s):  
А. Саргсян ◽  
E. Klinger ◽  
C. Leroy ◽  
Т.А. Вартанян ◽  
Д. Саркисян

For the first time, magnetically induced (MI) transitions of the D2 line of the 39K atom in an external magnetic field of 10–600G using circularly polarized radiation σ + and σ – have been investigated. According to the selection rules in a zero magnetic field, transitions between sublevels of the ground and excited levels of the hyperfine structure with Fe - Fg = delta F = ± 2 are prohibited, while in the magnetic field there is a giant increase in their probabilities. For MI transitions, Fg = 1-> Fe = 3(delta F = +2) the highest probability is achieved when using σ+ radiation, and for Fg = 2->Fe = 0 the highest probability is achieved when using σ-  radiation. For the atomic transitions spectral separation the process of selective reflection of laser radiation from nanocell, filled with potassium atoms is used. This which allowed us to study the behavior of the MI transitions. The experiment well consistent with the theory.


Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 36 ◽  
Author(s):  
David Moss ◽  
Dmitry Sokoloff

Magnetic fields in the discs of spiral galaxies are quite well understood, although, of course, many details still require investigation and future observations with new generations of radio telescopes will be valuable here. Magnetic configurations around galactic discs and, in particular, the magnetic field components perpendicular to galactic discs seem to be much more poorly understood and deserve further investigation both observationally and by modelling. Another problem to be addressed in future investigations is the magnetic configuration in galactic halos and, in particular, interactions with the intergalactic medium and various winds. Finally, the importance of the observational determination of such drivers of galactic dynamo action as mirror asymmetry of the turbulent galactic flows are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document