scholarly journals Analisis Kinerja Web Server pada SIM Manajemen Diklat Poltekpel Sorong Menggunakan RDBMS MySQL dan MariaDB

2020 ◽  
Vol 1 (1) ◽  
pp. 12-20
Author(s):  
Jeffry Jeffry

Perkembangan teknologi informasi dan data meningkat pesat di era big data seperti sekarang ini. Database Management System menjadi bagian utama yang sangat penting untuk mengontrol arus data. Penelitian ini membandingkan kinerja web server yang menggunakan RDBMS open source yang berbeda antara MySQL dan MariaDB. Pengujian dilakukan pada Oracle Virtual Machine Virtualbox menggunakan ApacheBench untuk mengukur kinerja Web Server pada SIM Manajemen Diklat Poltekpel Sorong. Hasil percobaan menunjukkan bahwa web server ketika menggunakan RDBMS MySQL cenderung memiliki performa yang cukup stabil ketika permintaan akses web di bawah 300 kali secara bersamaan yaitu pada 100,200 dan 300 kali berturut-turut sebesar 7.764/ms, 16.386/ms dan 30.025/ms. Namun, saat permintaan akses web di atas 300 secara bersamaan RDBMS MariaDB justru menunjukkan kinerja yang lebih baik. Hal ini ditunjukkan dengan permintaan akses 400 dan 500 kali web server secara bersamaan, waktu respon terlihat lebih cepat dibandingkan ketika menggunakan RDBMS MySQL berturut-turut sebesar 51.877/ms dan 54.702/ms sedangkan RDBMS mariaDB untuk permintaan akses web server secara bersamaan pada 100,200,300,400 dan 500 berturut-turut sebesar 14.213/ms, 25.642/ms, 40.831/ms, 48.021/ms dan 51.630/ms

Big Data ◽  
2016 ◽  
pp. 1495-1518
Author(s):  
Mohammad Alaa Hussain Al-Hamami

Big Data is comprised systems, to remain competitive by techniques emerging due to Big Data. Big Data includes structured data, semi-structured and unstructured. Structured data are those data formatted for use in a database management system. Semi-structured and unstructured data include all types of unformatted data including multimedia and social media content. Among practitioners and applied researchers, the reaction to data available through blogs, Twitter, Facebook, or other social media can be described as a “data rush” promising new insights about consumers' choices and behavior and many other issues. In the past Big Data has been used just by very large organizations, governments and large enterprises that have the ability to create its own infrastructure for hosting and mining large amounts of data. This chapter will show the requirements for the Big Data environments to be protected using the same rigorous security strategies applied to traditional database systems.


Author(s):  
H. Wu ◽  
K. Fu

Abstract. As a kind of information carrier which is high capacity, remarkable reliability, easy to obtain and the other features,remote sensing image data is widely used in the fields of natural resources survey, monitoring, planning, disaster prevention and the others (Huang, Jie, et al, 2008). Considering about the daily application scenario for the remote sensing image in professional departments, the demand of usage and management of remote sensing big data is about to be analysed in this paper.In this paper, by combining professional department scenario, the application of remote sensing image analysis of remote sensing data in the use and management of professional department requirements, on the premise of respect the habits, is put forward to remote sensing image metadata standard for reference index, based on remote sensing image files and database management system, large data serialization of time management methods, the method to the realization of the design the metadata standard products, as well as to the standard of metadata content indexed storage of massive remote sensing image database management.


2005 ◽  
Vol 171 (2) ◽  
pp. 133-153 ◽  
Author(s):  
Bjørn K. Alsberg ◽  
Håvard Bjerke ◽  
Gunn M. Navestad ◽  
Per-Olof Åstrand

Author(s):  
Andi Setiadi Manalu ◽  
Sahat Sonang Sitanggang

Teknologi Cloud Computing dengan layanan Private Cloud Storage merupakan dan menjadi sebuah jawaban untuk permasalahan yang sering terjadi dikehidupan kita sehari-hari yaitu pada permasalahan penggunaan perangkat penyimpanan fisik seperti memory card, flashdisk dan harddisk dimana data-data yang ada didalamnya sering terjadi kerusakan seperti kerusakan fisik perangkat, terkena bad sector, terkena virus, perangkat hilang dan lain sebagainya seperti yang sering terjadi pada mahasiswa dan mahasiswi Politeknik Bisnis Indonesia Murni Sadar Pematangsiantar. Teknologi Cloud Storage yang akan dirancang bersifat private hanya untuk kalangan kampus dan pada jaringan lokal kampus yang tersedia. Perancangan sistem yang akan dilakukan menggunakan virtualisasi dengan Oracle VM VirtualBox. Sistem operasi menggunakan Ubuntu Server 14.04.6 LTS, Web Server menggunakan Apache2, DBMS (Database Management System) menggunakan Mariadb, Interpreter menggunakan PHP dan Content Management System (CMS) menggunakan Owncloud. Setelah perancangan sistem dilakukan kemudian sistem tersebut diimplementasikan pada VirtualBox setelah itu dilakukan pengujian sistem terhadap akses data ke sistem dengan Smartphone dan komputer sehingga didapatkan sebuah sistem yang dapat berjalan dan berfungsi dengan baik agar dapat meningkatkan efisiensi perkuliahan.


2020 ◽  
Vol 8 (6) ◽  
pp. 1609-1615

The constant innovations and rapid developments in the IT industry have revolutionized the thinking and mindset of the people throughout the world. Government departments have also been computerized to provide transparent, efficient and responsible government through e-governance. The government have been providing access to various websites or portal for filing complaints, uploading or downloading forms, pictures, data or PDFs to avail the government services. Enlightened citizens are frequently using the portal to access government services. Thus, the size and volume of data that need to be managed by government departments have been increasing drastically under e-governance. The traditional database management system is not designed to deal with such mix type of data. Moreover, the speed at which the e-governance generated data need to be processed is another big challenge being faced by traditional database system. All the abovesaid concerns can be solved by using the emerging technology - Big Data Analytics techniques. Big data analytic techniques can make the government more efficient and transparent by processing structured, unstructured or mixed types data at a great speed. In this paper, we shall understand the scenario for the need or the emergence of big data analytics in egovernance and knowhow of Apache Spark. This paper proposes a practical approach to integrate big data analytics with egovernance using Apache Spark. This paper also reflects how major issues of traditional database management system (mixed type datasets, speed and accuracy) can be resolved through the integration of big data analytics and e-governance.


Author(s):  
Ana Aguilera ◽  
José Tomás Cadenas ◽  
Leonid Tineo

This chapter is focused in incorporating the fuzzy capabilities to a relational database management system (RDBMS) of open source. The fuzzy capabilities include connectors, modifiers, comparators, quantifiers, and queries. The extensions consider a more flexible DDL and DML languages. The aim is to show the design and implementation details in the RDBMS PostgreSQL. For this, a fuzzy query processor and fuzzy access mechanism has been designed and implemented. The physical fuzzy relational operators have been also defined and implemented. The flow of a fuzzy query through the different modules (parser, planner, optimizer, and executor) has been shown. Some experimental results have been included to demonstrate the performance of the proposal solution. These results show that the extensions have not decreased the performance of the RDBMS.


2015 ◽  
Vol 6 (1) ◽  
pp. 1-11 ◽  
Author(s):  
M Misbachul Huda ◽  
Dian Rahma Latifa Hayun ◽  
Zhin Martun

Today the rapid growth of the internet and the massive usage of the data have led to the increasing CPU requirement, velocity for recalling data, a schema for more complex data structure management, the reliability and the integrity of the available data. This kind of data is called as Large-scale Data or Big Data. Big Data demands high volume, high velocity, high veracity and high variety. Big Data has to deal with two key issues, the growing size of the datasets and the increasing of data complexity. To overcome these issues, today researches are devoted to kind of database management system that can be optimally used for big data management. There are two kinds of database management system, relational database management system and nonrelational system that can be optimally used for big data management. There are two kinds of database management, Relational Database Management and Non-relational Database Management. This paper will give reviews about these two database management system, including description, vantage, structure and the application of each DBMS. Index Terms - Big Data, DBMS, Large-scale Data, Non-relational Database, Relational Database.


Author(s):  
Efrain Villalvazo-Laureano ◽  
Richard Jesus Guerrero-Deniz ◽  
Ramón Octavio Jiménez-Betancourt

This paper presents the communication and using a (DB) Database to Vectorial Compensator. Using the serial communication as means between the compensator and the DB. Employing a datab in MYSQL since the DB is in a web server, later get the visual data in a web site. MySQL was used to the electric’s device data storage. To greaster ease of handling of DB, employing as DataBase Management System; “XAMPP”.


Author(s):  
Mohammad Alaa Hussain Al-Hamami

Big Data is comprised systems, to remain competitive by techniques emerging due to Big Data. Big Data includes structured data, semi-structured and unstructured. Structured data are those data formatted for use in a database management system. Semi-structured and unstructured data include all types of unformatted data including multimedia and social media content. Among practitioners and applied researchers, the reaction to data available through blogs, Twitter, Facebook, or other social media can be described as a “data rush” promising new insights about consumers' choices and behavior and many other issues. In the past Big Data has been used just by very large organizations, governments and large enterprises that have the ability to create its own infrastructure for hosting and mining large amounts of data. This chapter will show the requirements for the Big Data environments to be protected using the same rigorous security strategies applied to traditional database systems.


Sign in / Sign up

Export Citation Format

Share Document