scholarly journals INTERCROPPING AND N FERTILIZATION EFFECTS ON STRIGA INFESTATION, SOIL C AND N AND GRAIN YIELD OF MAIZE IN THE SOUTHERN GUINEA SAVANNA OF NIGERIA

2021 ◽  
pp. 97-108
Author(s):  
Moses Samuel BASSEY ◽  
Joy Ekaette ETOPOBONG ◽  
Bigun Ishaku PONMAN ◽  
Sheriff Adam BADOM ◽  
Aliyu USMAN ◽  
...  
2002 ◽  
Vol 82 (2) ◽  
pp. 211-217 ◽  
Author(s):  
S S Malhi ◽  
J T Harapiak ◽  
M. Nyborg ◽  
K S Gill ◽  
N A Flore

An adequate level of organic matter is needed to sustain the productivity, improve the quality of soils and increase soil C. Grassland improvement is considered to be one of the best ways to achieve these goals. A field experiment, in which bromegrass (Bromus inermis Leyss) was grown for hay, was conducted from 1974 to 1996 on a thin Black Chernozemic soil near Crossfield, Alberta. Total organic C (TOC) and total N (TN), and light fraction organic C (LFOC) and light fraction N (LFN) of soil for the treatments receiving 23 annual applications of 112 kg N ha-1 as ammonium nitrate (AN) or urea in early autumn, late autumn, early spring or late spring were compared to zero-N check. Soil samples from 0- to 5- cm (layer 1), 5- to 10- cm (layer 2), 10- to 15- cm (layer 3) and 15- to 30-cm depths were taken in October 1996. Mass of TOC, TN, LFOC and LFN was calculated using equivalent mass technique. The concentration and mass of TOC and LFOC, TN and LFN in the soil were increased by N fertilization compared to the zero-N check. The majority of this increase in C and N occurred in the surface 5-cm depth and predominantly occurred in the light fraction material. In layer 1, the average increase from N fertilization was 3.1 Mg C ha-1 for TOC, 1.82 Mg C ha-1 for LFOC, 0.20 Mg N ha-1 for TN and 0.12 Mg N ha-1 for LFN. The LFOC and LFN were more responsive to N fertilization compared to the TOC and TN. Averaged across application times, more TOC, LFOC, TN and LFN were stored under AN than under urea in layer 1, by 1.50, 1.21, 0.06 and 0.08 Mg ha-1, respectively. Lower volatilization loss and higher plant uptake of surfaced-broadcast N were probable reasons from more soil C and N storage under AN source. Time of N application had no effect on the soil characteristics studied. In conclusion, most of the N-induced increase in soil C and N occurred in the 0- to 5-cm depth (layer 1) and in the light fraction material, with the increases being greater under AN than urea. Key words: Bromegrass, light fraction C and N, N source, soil, total organic C and N


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1280
Author(s):  
Julius Kwesiga ◽  
Kristina Grotelüschen ◽  
Kalimuthu Senthilkumar ◽  
Daniel Neuhoff ◽  
Thomas F. Döring ◽  
...  

Organic amendments can reportedly sustain and increase lowland rice productivity in smallholder systems. Few studies have assessed locally-available substrates in hydrologically variable floodplain environments. We investigated the effects of green and farmyard manures on rice yields, and total soil C and N in the Kilombero floodplain, Tanzania. At both the fringe and the middle positions, five treatments were applied in 2016 and 2017, comprising (1) non-amended control, (2) farmyard manure, (3) pre-rice legumes, (4) post-rice legumes and (5) a combination of green and farmyard manures. Residual treatment effects were assessed in 2018 when rice plots were uniformly non-amended. Depending on the year and the position, organic amendments increased rice grain yields by 0.7–3.1 Mg ha–1 above the non-amended control. Sole green and farmyard manure applications had similar effects on grain yield, while a combination of green and farmyard manure led to a significant increase in grain yield above both the control and sole applications of organic amendments in both years. The contribution from biological N2 fixation by legumes ranged from 4 to 61 kg N ha–1. Despite partial N balances being mostly negative, we observed positive residual effects on the yield of the non-amended rice in the third year. Such effects reached up to 4 Mg ha−1 and were largest with post-rice legumes, sole or combined with farmyard manure. Irrespective of the position in the floodplain, manures significantly increased soil C and N contents after two years, hence enhancing soil fertility and resulting in increased rice grain yields. Comparable benefits may be obtained along the hydrological gradients of other large river floodplains of the region and beyond.


2005 ◽  
Vol 272 (1-2) ◽  
pp. 41-52 ◽  
Author(s):  
Feike A. Dijkstra ◽  
Sarah E. Hobbie ◽  
Peter B. Reich ◽  
Johannes M. H. Knops

2021 ◽  
Author(s):  
Anas Iqbal ◽  
Liang He ◽  
Pengli Yuan ◽  
Izhar Ali ◽  
Ahmad Khan ◽  
...  

Abstract Organic fertilizers are widely used in agriculture production and change the soil carbon (C) and nitrogen (N) contents, thus improving crop production. The increased amount of soil C and N exhibit a greater potential to improve the leaf physiological activity, yields and grain quality of rice by improving soil fertility indices. To understand the relationship between soil C and N contents with leaf physiological activity and grain quality; organic fertilizers (i.e., cattle manure (CM) and poultry manure (PM)) coupled with chemical fertilizer (CF) was applied at the different proportion. The recommended rate of N 150 (kg ha−1) was provided from manure and CF using six treatments, i.e., T1— CF0; T2—100% CF; T3—60% CM + 40% CF; T4—30% CM + 70%CF; T5—60% PM + 40% CF, and T6—30% PM + 70% CF. Results showed that soil organic C (SOC), total N (TN), leaf net photosynthetic rate (Pn), SPAD values, grain yield and grain quality attributes were significantly increased with combined organic and inorganic fertilizer application. Averaged over the years, T6 treatment significantly improved SOC, TN, Pn, starch content (SC), amylose content (AC), and grain yield by 16%, 12%, 9%, 7%, 12%, and 24%, respectively, compared to CF-only. However, no significant differences among T4 and T6 were observed for studied parameters. In addition, the linear regression exhibited that SOC (R2= 0.70** & R2=0.50*) and TN (R2= 0.62* & R2=0.58*) were positively correlated with grain SC and AC, respectively. Likewise, Pn (R2= 0.51* & R2=0.62*) were also positively associated with SC and AC, respectively. The correlation analysis showed that improving SOC and TN played a key role in enhancing leaf physiological activity and grain nutritional quality. Thus, the combination of organic and inorganic fertilizers at a 30:70 ratio is a promising option for the improvement of soil fertility and grain yield of rice as well as grain nutritional traits.


2020 ◽  
Author(s):  
Sonia C. Clemens ◽  
◽  
Mia Brkljaca ◽  
Delaina Pearson ◽  
C. Brannon Andersen

2021 ◽  
Vol 11 (5) ◽  
pp. 2139
Author(s):  
Junliang Zou ◽  
Bruce Osborne

The importance of labile soil carbon (C) and nitrogen (N) in soil biogeochemical processes is now well recognized. However, the quantification of labile soil C and N in soils and the assessment of their contribution to ecosystem C and N budgets is often constrained by limited information on spatial variability. To address this, we examined spatial variability in dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) in a Sitka spruce forest in central Ireland. The results showed moderate variations in the concentrations of DOC and DTN based on the mean, minimum, and maximum, as well as the coefficients of variation. Residual values of DOC and DTN were shown to have moderate spatial autocorrelations, and the nugget sill ratios were 0.09% and 0.10%, respectively. Distribution maps revealed that both DOC and DTN concentrations in the study area decreased from the southeast. The variability of both DOC and DTN increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. The cokriging technique performed better than the ordinary kriging for predictions of DOC and DTN, which are highly correlated. This study provides a statistically based assessment of spatial variations in DOC and DTN and identifies the sampling effort required for their accurate quantification, leading to improved assessments of forest ecosystem C and N budgets.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1214
Author(s):  
Hendrik P. J. Smit ◽  
Thorsten Reinsch ◽  
Pieter A. Swanepoel ◽  
Ralf Loges ◽  
Christof Kluß ◽  
...  

Nitrogen fertilization, irrigation and concentrate feeding are important factors in rotational pasture management for dairy farms in South Africa. The extent to which these factors affect environmental efficiency is subject to current and intense debate among scientists. A three-year field study was conducted to investigate the yield response of different N-fertilizer treatments (0 (N0), 220 (N20), 440 (N40), 660 (N60) and 880 (N80) kg N ha−1 year−1) on grazed pastures and to calculate the carbon footprint (CF) of milk produced. Excessive N-fertilization (N60 and N80) did not increase herbage dry matter and energy yields from pastures. However, N80 indicated the highest N-yield but at the same time also the highest N surpluses at field level. A maximum fertilizer rate of 220 kg ha−1 year−1 (in addition to excreted N from grazing animals) appears sufficient to ensure adequate herbage yields (~20 t DM ha−1 year−1) with a slightly positive field-N-balance. This amount will prevent the depletion of soil C and N, with low N losses to the environment, where adequate milk yields of ~17 t ECM ha−1 with a low CF (~1.3 kg CO2 kg ECM−1) are reached. Methane from enteric fermentation (~49% ± 3.3) and N2O (~16% ± 3.2) emissions from irrigated pastures were the main contributors to the CF. A further CF reduction can be achieved by improved N-fertilization planning, low emission irrigation techniques and strategies to limit N2O emissions from pasture soils in South Africa.


Geoderma ◽  
2021 ◽  
Vol 399 ◽  
pp. 115109
Author(s):  
Paul L. Mudge ◽  
Jamie Millar ◽  
Jack Pronger ◽  
Alesha Roulston ◽  
Veronica Penny ◽  
...  
Keyword(s):  
Soil C ◽  

2018 ◽  
Vol 45 ◽  
pp. 00085
Author(s):  
Izabela Sówka ◽  
Yaroslav Bezyk ◽  
Maxim Dorodnikov

An assessment of C and N balance in urban soil compared to the natural environment was carried out to evaluate the influence of biological processes along with human-induced forcing. Soil C and N stocks were quantified on the samples (n=18) collected at 5 - 10 cm depth from dominated green areas and arable lands in the city of Wroclaw (Poland) and the relatively natural grassland located ca. 36 km south-west. Higher soil carbon and nitrogen levels (C/N ratio = 11.8) and greater microbial biomass C and N values (MBC = 95.3, MBN = 14.4 mg N kg-1) were measured in natural grassland compared with the citywide lawn sites (C/N ratio = 15.17, MBC = 84.3 mg C kg-1, MBN = 11.9 mg N kg-1), respectively. In contrast to the natural areas, the higher C and N concentration was measured in urban grass dominated soils (C = 2.7 % and N = 0.18 % of dry mass), which can be explained mainly due to the high soil bulk density and water holding capacity (13.8 % clay content). The limited availability of soil C and N content was seen under the arable soil (C = 1.23 %, N = 0.13 %) than in the studied grasslands. In fact, the significantly increased C/N ratios in urban grasslands are largely associated with land conversion and demonstrate that urban soils have the potential to be an important reservoir of C.


Sign in / Sign up

Export Citation Format

Share Document