scholarly journals Formulation and Evaluation of Transdermal Patch of Thiochochicoside

Author(s):  
Vijendra Pal Singh Rathore ◽  
Komal Tikariya ◽  
Jayanti Mukherjee

The aim of the study is to formulate and evaluate transdermal patches of Thiocholchicoside In the present study, matrix type were prepared by moulding techniques. This mode of drug delivery is more beneficial for chronic disorders such as Rheumatoid arthritis which require long term drug administration to maintain therapeutic drug concentration in plasma. Transport of drugs or compounds via skin is a complex phenomenon, which allows the passage of drugs or compounds into and across the skin. In the present work an attempt has been made to formulate and evaluate the transdermal patches of Thiocholchicoside using various blends of polymer. The polymeric combinations EC/PVP and EC/HPMC used for the formulation of transdermal patches showed good film forming property. The patches formed were thin, flexible, smooth and transparent. The weight variation tests showed less variation in weight and suggesting uniform distribution of drug and polymer over the mercury surface. The thicknesses of the transdermal patches were found to increase on increasing concentration of hydrophilic polymers like PVP and HPMC.All the patches showed good flexibility and folding endurance properties. The result suggests that the formulations with increased hydrophilic polymer concentration showed long folding endurance. The moisture content in the patches was found to be low and formulations with more hydrophilic polymer concentrations showed more percentage moisture content. The in-vitro drug release studies showed that formulations TDP2, TDP3, TDP4, and TDP5 with increased concentration of hydrophilic polymer showed rapid release. The drug content analysis showed minimum variations suggesting uniform distribution of drug.

Author(s):  
Sanjay P ◽  
Vishal Gupta N ◽  
Gowda Dv ◽  
Praveen Sivadasu

Objective: The main objective of the study was to formulate the oral disintegrating films loaded with atenolol by solvent-casting method and to carry out its evaluation studies.Methods: The films were prepared using the film-forming hydrophilic polymer like hydroxypropyl methylcellulose (E-5) and super disintegrant like pectin in various proportions.The formulated oral films were characterized for Fourier transform infrared (FTIR) and morphological evaluations. Various physicochemical parameters such as weight variation, folding endurance, surface pH, in vitro disintegration, and in vitro dissolution studies were carried out.Results: FTIR studies revealed that there was no drug-polymer interaction. The morphological evaluation of films showed that all the films were homogenous and transparent. The folding endurance test ensured that the films had sufficient brittleness and by weight variation test, it was inferred that all the films were within the deviation. The surface pH study showed the pH of the films was around neutral pH. The drug was well distributed in all the films. The films disintegrated within 120 s and the fastest being disintegrated in 30 s. Based on all the evaluation parameters, F6 had shown optimal performance and remarkable increase in drug release of 94.38% in 2 min.Conclusion: Thus, formulated oral disintegrating films can be termed as an alternative approach to deliver atenolol.


2021 ◽  
Vol 14 (3) ◽  
pp. 067-078
Author(s):  
Kailash Sahu ◽  
Saman Pathan ◽  
Kapil Khatri ◽  
Neeraj Upmanyu ◽  
Satish Shilpi

The idea of delivering drugs through skin is old, as the use is reported back in 16th century B.C. The husk of the castor oil plant in water was placed on an aching head. Today the transdermal drug delivery is well accepted for delivering drugs to the systemic circulation. The aim of this study was to design a compound transdermal patches containing ondansetrone HCL and dexamethasone for the treatment of nausea and vomiting in case of chemotherapy and regular symptom of nausea and vomiting. In the present work, an attempt has been made to develop a matrix-type transdermal therapeutic system comprising of Ondansetron-HCl and Dexamethasone in different ratios of hydrophilic and hydrophobic polymeric combinations with 15% w/v plasticizer and 5% w/v penetration enhancer were mixed with the polymer solution polymer were using solvent evaporation technique. The patches were further subjected to various characterization studies for prepared transdermal patches along with the thickness, tensile strength, folding endurance, % elongation, % moisture content, % moisture uptake, % drug content, In vitro drug permeation study on Franz diffusion cells. Obtained results showed no physical-chemical incompatibility between drugs and polymers. On the basis of results obtained from, tensile strength (18±0.16), folding endurance (126 ± 1 to 68 ± 2), % moisture content (2.9±0.4), % moisture uptake, % drug content (92.41 to 98.9 %), TPEC (Transdermal Patches of Ethyl Cellulose) was selected as optimized formulation. In vitro release of the selected batch, TPEC-1 followed by zero-order and formulation showed 62.69 % drug diffusion within 10 hours. Conclusively, the patches were considered to deliver drugs safely through the skin for a longer period often.


Author(s):  
Zainab E Jassim ◽  
Mais F Mohammed ◽  
Zainab Ahmed Sadeq

Objective: The aim of the present work was to formulate and evaluate fast dissolving film containing lornoxicam.Materials and Methods: To prepare the film, hydroxypropyl methylcellulose E5 and polyvinyl alcohol (PVA) were used as film-forming polymers by solvent casting method. Glycerine was used as plasticizer, aspartame, and mannitol as sweetener. All prepared films were evaluated for its weight variation, disintegration time, thickness, drug content, pH, dissolution study, and folding endurance. The drug-excipients compatibility study was done using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR).Results: Satisfactory results obtained when PVA was used as film-forming polymer, and the drug was dispersed in the polymer solution using poloxamer 407 as a solubilizing agent. Formulation F2 is considered as the optimized formulation as it showed good folding endurance (>300), faster disintegration rate (30 s), and maximum in vitro drug release (87%) within 5 min. DSC and FTIR studies showed no interaction between drug and the polymers.Conclusion: It can be concluded from the study that the fast dissolving film can be prepared for poorly water-soluble drug lornoxicam using PVA as a suitable film-forming polymer.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (07) ◽  
pp. 30-35
Author(s):  
P Goudanavar ◽  
◽  
N Ambhore ◽  
D. Hiremath ◽  
R Udupi

Brimonidine is an anti-glaucoma agent useful in treatment of intraocular pressure. In the present study an attempt was made to formulate ophthalmic inserts of brimonidine tartrate (BT) in combination with polymers like methylcellulose, carboxymethyl chitosan and HPMC. Prepared ocular films were evaluated for uniformity in thickness, weight variation, % moisture absorption, % moisture loss, in vitro and in vivo release studies. The physical characteristics of the films were found to be within acceptable limits. The study confirmed that brimonidine tartrate can be delivered through films made of methyl cellulose, carboxymethyl chitosan and HPMC combination matrix cast with ethyl cellulose (EC). In vitro release study revealed that increasing the proportion of polymer concentration decreased the rate of release of brimonidine tartrate. In vivo release profile of ocular inserts revealed controlled release of drug over a period of 24 h. Optimized formulation CH3 was evaluated for in vivo release characteristics using rabbits as animal model. The optimized formulation CH3 was found to be stable at accelerated storage condition of 40/75 % RH.


Author(s):  
SAMIULLAH ◽  
SYED UMER JAN ◽  
RAHMAN GUL ◽  
SYED JALALUDIN ◽  
ASMATHULLAH

Objective: This study was conducted to design a transdermal dosage form of pseudoephedrine HCL and to evaluate its release under controlled rates for sustained transdermal delivery of Pseudoephedrine. Methods: Transdermal patches were prepared by the casting evaporation method. Utilizing eudragit RL100. Patches were characterized by physical appearance, moisture content, thickness, weight variation, folding endurance, tensile strength and stability studies. Fourier transform infrared spectroscopic studies (FTIR), differential scanning calorimetry analysis (SCA) and XRD studies. Four different permeation enhancer (Tween 20, thymus oil, castor oil and eucalyptus oil) was employed. In vitro release of drugs was done in the dissolution paddle apparatus. Release studies were performed in distilled water at 37 °C. Scanning electron microscope studies were performed before and after the drug. Results: Transdermal patches with enhancers were formulated successfully with a concentration of 1% (W/V). The patches indicated stable physicochemical characteristics. FTIR, SCA and XRD Studies showed that there were no physical and chemical interactions between excipients and drugs. Results of in vitro permeation studies showed that enhancers used in this study increased drug released. The enhancers showed faster released than no enhancer. This arrangement can be shown as Tween>Eucalyptus oil>Thymus oil and castor oil. Formulation F2 is optimized among all formulations showed an 83.3% release. Conclusion: Transdermal patches of pseudoephedrine were successfully developed by using pseudo epinephrine HCL. These patches proved to be very useful for therapeutic purposes in the pharmaceutical industry without making the patients unconscious, unlike the trivial methods of treatment.


Author(s):  
Surya Teja S P ◽  
Manisha Khandelwal ◽  
Chitra V ◽  
Damodharan N

  Objective: Felodipine, a BCS class II calcium channel blocker, is used in the management of hypertension and angina pectoris. Due to the poor solubility and low bioavailability of the drug, there is a necessity to design an alternative route to achieve a constant plasma concentration of felodipine for its maximum therapeutic utility and can be achieved by transdermal route.Methods: In this study, matrix type transdermal patches were prepared using different combinations of hydrophilic polymer, namely, polyvinylpyrrolidone (PVP) and hydrophobic polymer, namely, ethyl cellulose (EC) by solvent evaporation technique and were subjected for characterization.Results: The Fourier transform infrared studies confirmed the compatibility between drug and polymers. Hydrophilic nature of the polymers greatly influenced physical characteristics and dissolution rate. Equal percentage of PVP and EC yielded patches with good folding endurance. The concentration of plasticizer present in the patches gave them desired folding endurance, and it increased with the presence of hydrophilic polymer. The formulation with highest PVP concentration, F3, exhibited a maximum drug release of 96.23% for 24 hrs. While the formulation with highest EC concentration, F5, exhibited only 74.45% drug release for 24 hrs.Conclusion: From the data, formulation F2 (PVP/EC, 2:1) can be concluded as best formulation due to its desired physical characteristics, good initial drug release, sustained release behavior, and good in vitro permeation. This formulation can be further studied in a clinical scenario.


2021 ◽  
Vol 68 (1) ◽  
pp. 80-83
Author(s):  
S. Rohaľová ◽  
M. Guman ◽  
T. Wolaschka

Abstract Transdermal matrices containing 1.258 mg/cm2 of propranolol and consisting of ethylcellulose (EC), castor oil, and hydroxypropylmethylcellulose (HPMC) or halloysite (HA) were prepared. They were evaluated by tests such as folding endurance, moisture content and absorption, and paddle dissolution test. Of the total amount of propranolol in the samples (20 mg), 28.41% ± 3.30% was released from the EC film after 24 hours, the addition of HA 20.94% ± 1.52% (f1 = 61.82 ± 7.70, f2 = 53.61 ± 4.25) or HPMC 36.05% ± 6.18% (f1 = 34.48 ± 8.79, f2 = 65.02 ± 5.33). The dissolution profiles of HA and HPMC films were compared with each other (f1 = 51.35 ± 12.56, f2 = 59.20 ± 9.43).


Author(s):  
SHIKHA BAGHEL CHAUHAN ◽  
SUSHILA SAINI

Objective: Oral metoprolol tartrate has a short elimination half-life (2-3h) and low bioavailability undergoes extensive first-pass metabolism and frequent dosing. The aim of the present investigation was to formulate, develop and evaluate metoprolol tartrate transdermal patches using various synthetic and natural penetration enhancers. Methods: Enhancers used were eugenol, limonene, basil oil, urea and SLS (sodium lauryl sulphate). Polymer used was chitosan and PEG 400 used as a plasticizer. Transdermal Films were prepared by using solvent casting method. FTIR and DSC were studied to assess any interaction between the drug and polymers. Films were evaluated for Physico-chemical Characteristics like thickness, weight variation, folding endurance, moisture loss, moisture absorption and drug content. In vitro skin permeation studies were performed using Keshary chien cell For 24 h across rat skin. Results: Chitosan was found to be a suitable polymer for matrix formation. 3.5% w/w was used to optimize to formulate transdermal patches. 1.5% of total solution v/v lactic acid was used for dissolution of chitosan. 2.5%v/v of total solution PEG 400 was used to provide plasticity and smoothness to the patches. From the evaluation of patches formulation, F10 containing Basil oil as penetration enhancer in the concentration of 1.5% v/v was found to be best among all batches because of its consistent release rate For 24 h and extent of drug release was 85.20%. It can be concluded that naturally occurring volatile oils i.e., terpenes appear acceptable permeation enhancer and shows the best permeation across skin as indicated by high percutaneous enhancement ability. Conclusion: The developed transdermal patches are stable, non-irritating, and had increased efficacy of metoprolol and therefore had a good potential for hypertension treatment.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 27-36
Author(s):  
B.V. Ramana ◽  
◽  
C Triveni ◽  
G Nagarajan ◽  
T.E.G.K. Murthy

The aim of this study was to develop an innovative fast dissolving oral film of Ranitidine HCl based on polymers such as Hydroxy Propyl Methyl Cellulose-E6, Hypromellose-E3 LV, and Polyvinyl alcohol. Trials on various concentrations of polymers were conducted in order to optimize polymer concentration and develop the films with best suitability and acceptability. The various concentrations of super disintegrating agents like Crospovidone, Croscarmellose sodium and Sodium Starch Glycolate were evaluated. The fast dissolving oral films were characterized for weight, thickness, folding endurance, disintegration and dissolution using in vitro experimentations. The effect of super disintegrating agents on drug release profile and film forming properties was investigated. The prepared films exhibited satisfactory physicochemical characteristics. Finally, it is concluded that Ranitidine can be formulated with Hydroxy Propyl Methyl Cellulose-E6, Hypromellose-E3 LV, and Polyvinyl Alcohol polymers to achieve oral film formulation by using solvent casting method.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (03) ◽  
pp. 15-23
Author(s):  
N Sharma ◽  
◽  
R. Awasthi

The aim of present work was to develop a gastroretentive floating raft forming film of atenolol using solvent casting technique. The films were characterized in terms of drug-excipient compatibility by FTIR, drug content, swelling, folding endurance, thermal behaviour by DSC, effect of processing parameters on drug state (amorphous or crystalline) by X-ray diffraction (XRD), and in vitro drug release profiles. The results confirm that there was no interaction between the drug-polymers and fusion of drug crystals within the polymer matrix. Results of XRD indicate partial dissolution of drug within the polymer matrix and suggested it was partly distributed in amorphous form throughout the film. The weight variation, thickness and folding endurance of films were in the range of 2.170 ± 0.05 to 2.444 ± 0.23 gm, 1.120 ± 0.032 to 1.125 ± 0.011 mm and 200 ± 5 to 400 ± 5, respectively. The pH values of the different films were between 6.8 to 7.21. After 24 h, the best selected film shows 75% and 90% of drug release in 0.1 N HCl (pH 1.2) and in phosphate buffer (pH 6.8), respectively. Based on these results it is suggested that the incorporation of drug into the hydrophilic floating film may be an appropriate strategy to improve the dissolution profile and oral bioavailability of the drug.


Sign in / Sign up

Export Citation Format

Share Document