scholarly journals INFLUENCE OF LASER ENERGY ON CDS NANO PARTIALS PREPARED BY LASER INDUCED PLASMA

2021 ◽  
Vol 03 (03) ◽  
pp. 69-76
Author(s):  
Hayim Ch, MAGID ◽  
Intesar Hato HASHIM ◽  
Kadhim A. AADIM

In this work ,cadmium sulfide (CdS) thin films deposited on glass substrates using Nd-YAG laser wavelength (1064 nm) laser-induced plasma deposition technique (PLD). The structural, morphology and optical properties of these films have been described as a change in the effect of laser pulse energy ( ). The X-ray diffraction results show that s all samples were polycrystalline hexagonal structure and the crystalline size ghange with increasing of the laser energy. The optical properties results show that the transmittance of all deposited thin films decreases with increasing of laser pulse energy .As a result of the microscopic examination of the surface, it was found that the surface is uniform and the granular size increases with the increase of the laser power.

2021 ◽  
Vol 03 (03) ◽  
pp. 41-50
Author(s):  
Hiyam Ch. MAJED

Thin films of cadmium oxide (CdO) deposited on glass substrates using Nd-YAG laser wavelength (alpha= 532 nm) and period time (10ns) via laser-induced plasma deposition technique (PLD). The structural properties of these films have been described as a change in thickness (200 , 400 ,and 1000) nm) at substrate temperature of (400 ° C) and energy flounce of (0.4 J / cm2). The X-ray diffraction results show that he mean size of crystallite measured using Scherer formula to adjust the thickness of 200 nm, 400 nm and 1000 nm of CdO thin films is 47 nm, 64 nm and 78 nm respectively .Also the optical properties which included transmittance, absorbance , energy gap and optical constant such as the Refractive index, extinction coefficient real and imaginary parts of dielectric constants were determined .


2016 ◽  
Vol 849 ◽  
pp. 14-21
Author(s):  
Yun Hu Zhu ◽  
Jie Fu ◽  
Chao Zheng ◽  
Zhong Ji

A Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass was processed by Nd: Glass laser pulses with duration 30ns and energy in the range 20 to 30J. The surface morphology and surface micro-hardness of the vit1 metallic glass, treated with varying laser energy, had been studied in detail. Laser shock peening induced plastic deformation and caused a micro-dent to be generated on the vit1 surface. The optical profiling tests showed that laser pulse energy greatly influenced the diameter and depth of the micro-dents. The surface roughness which was caused by various laser pulse energy was assessed and characterized. The three-dimensional surface topography of the laser treated region on vit1 surfaces had been characterized. In addition the plastic deformation features were also studied.


2019 ◽  
Vol 12 (23) ◽  
pp. 97-104
Author(s):  
Kadhim A. Aadim

In this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of   as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy  and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.


2021 ◽  
Vol 19 (49) ◽  
pp. 42-52
Author(s):  
Kadhim A. Aadim ◽  
Maryam M. Shehab

In this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap for direct transitions was shown to be reduced by increasing laser energy within the range (4.29-3.7 eV).


Sign in / Sign up

Export Citation Format

Share Document