scholarly journals WIRELESS REAL TIME PROPORTIONAL CONTROL SYSTEM

Author(s):  
UJJWALA G. BORATE ◽  
PROF. R.T. PATIL

This system provides low power consuming and low cost wireless sensor network. This system provides a real time temperature and humidity. It also gives proportional control action. This system consists of TI’s MSP430 microcontroller which consumes ultra low power and improves the overall system performance. The Sensorion’s SHT 11 sensor is used to measure temperature and humidity. Sensor SHT 11 consumes low power and gives the fully calibrated digital output. Zigbee technology is used for wireless communication. Zigbee is low power consuming transceiver module. It operates within the ISM 2.4 GHz frequency band. AT and API command modes configure module parameters. RF data rate is 250 kbps. To achieve the proportional control triac and MOC 3022 are used. The star network topology is implemented. The temperature of earth goes on increasing due to global warming, deforestation, pollution, etc. Due to this the temperature of atmosphere also increases which is harmful and dangerous for many systems. This system provides precise control of temperature and humidity in Green House, Art Galleries and Industries.

Author(s):  
Laura Falaschetti ◽  
Lorenzo Manoni ◽  
Romel Calero Fuentes Rivera ◽  
Danilo Pau ◽  
Gianfranco Romanazzi ◽  
...  

2020 ◽  
Vol 12 (9) ◽  
pp. 1382 ◽  
Author(s):  
Joaquín Alonso-Montesinos

Characterizing the atmosphere is one of the most complex studies one can undertake due to the non-linearity and phenomenological variability. Clouds are also among the most variable atmospheric constituents, changing their size and shape over a short period of time. There are several sectors in which the study of cloudiness is of vital importance. In the renewable field, the increasing development of solar technology and the emerging trend for constructing and operating solar plants across the earth’s surface requires very precise control systems that provide optimal energy production management. Similarly, airports are hubs where cloud coverage is required to provide high-precision periodic observations that inform airport operators about the state of the atmosphere. This work presents an autonomous cloud detection system, in real time, based on the digital image processing of a low-cost sky camera. An algorithm was developed to identify the clouds in the whole image using the relationships established between the channels of the RGB and Hue, Saturation, Value (HSV) color spaces. The system’s overall success rate is approximately 94% for all types of sky conditions; this is a novel development which makes it possible to identify clouds from a ground perspective without the use of radiometric parameters.


2019 ◽  
Vol 412 (9) ◽  
pp. 2103-2109 ◽  
Author(s):  
Robert Zimmerleiter ◽  
Julian Kager ◽  
Ramin Nikzad-Langerodi ◽  
Vladimir Berezhinskiy ◽  
Frank Westad ◽  
...  

AbstractReal-time measurements and adjustments of critical process parameters are essential for the precise control of fermentation processes and thus for increasing both quality and yield of the desired product. However, the measurement of some crucial process parameters such as biomass, product, and product precursor concentrations usually requires time-consuming offline laboratory analysis. In this work, we demonstrate the in-line monitoring of biomass, penicillin (PEN), and phenoxyacetic acid (POX) in a Penicilliumchrysogenum fed-batch fermentation process using low-cost microspectrometer technology operating in the near-infrared (NIR). In particular, NIR reflection spectra were taken directly through the glass wall of the bioreactor, which eliminates the need for an expensive NIR immersion probe. Furthermore, the risk of contaminations in the reactor is significantly reduced, as no direct contact with the investigated medium is required. NIR spectra were acquired using two sensor modules covering the spectral ranges 1350–1650 nm and 1550–1950 nm. Based on offline reference analytics, partial least squares (PLS) regression models were established for biomass, PEN, and POX either using data from both sensors separately or jointly. The established PLS models were tested on an independent validation fed-batch experiment. Root mean squared errors of prediction (RMSEP) were 1.61 g/L, 1.66 g/L, and 0.67 g/L for biomass, PEN, and POX, respectively, which can be considered an acceptable accuracy comparable with previously published results using standard process spectrometers with immersion probes. Altogether, the presented results underpin the potential of low-cost microspectrometer technology in real-time bioprocess monitoring applications.


Author(s):  
Sangho Choe ◽  
Jeong-Hwa Yoo ◽  
Ponsuge Surani Shalika Tissera ◽  
Jo-In Kang ◽  
Hee-Kyung Yang

Author(s):  
Tusher Chakraborty ◽  
Md. Nasim ◽  
Sakib Md. Bin Malek ◽  
Md. Taksir Hasan Majumder ◽  
Md. Samiul Saeef ◽  
...  

2014 ◽  
Vol 926-930 ◽  
pp. 2482-2485
Author(s):  
Si Zu Hou ◽  
Ning Li

ZigBee technology is widely used in wireless sensor networks with the advantages of low power, low cost, convenient networking, etc. Design of ZigBee-based wireless sensor network nodes have become a demand. The nodes are generally placed in some occasions where the power supply inconvenient and require battery-powered, so the low-power of the nodes is an important indicator. The node chose CC2530 as the hardware core and transplanted Z-Stack protocol stack. It collected different data through different sensors and used ZigBee technology for wireless communication. This article describes the process of node hardware design, and reduces the power consumption of the node with choosing low-power devices, reducing the operating frequency and other methods. Low-power node saves the cost and increases the life of the nodes and the network. So it is good for increasing the continuity and stability of the network.


2019 ◽  
Author(s):  
Rolf Hut ◽  
Thanda Thatoe Nwe Win ◽  
Thom Bogaard

Abstract. Drifters that track their position are important tools in studying the hydrodynamic behaviour of rivers. Drifters that can be tracked in real time have so far been rather expensive. Recently both GPS receivers and GSM modems have become available at lower prices to tinkering scientists due to the rise of the Open Hardware revolution and the associated Arduino ecosystem. This article serves two goals. Firstly, we provide detailed instructions on how to build a Low Power GPS drifter with local storage and GSM model that we tested in a fieldwork on the confluence of the Chindwin and Ayeyarwady rivers in Myanmar. These instructions allow fellow geoscientists to recreate the device. Secondly, we set the question: "Has the Open Hardware revolution progressed to the point that a low power GPS drifter that wireless transmits its position can be made from Open Hardware component by geoscientists without extensive training or expertise in electrical and software engineering? We feel this question is relevant and timely as more low-cost Open Hardware devices are promoted but in practice applicability often is restricted to the 'tinkering engineer'. We argue that because of the plug and play nature of the components geoscientist should be able to construct these type of devices. However, to get such devices to operate at low power levels that fieldwork often requires detailed (mircro)electrical expertise.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1401
Author(s):  
Haq Nawaz ◽  
Ahsen Tahir ◽  
Nauman Ahmed ◽  
Ubaid U. Fayyaz ◽  
Tayyeb Mahmood ◽  
...  

Global navigation satellite systems have been used for reliable location-based services in outdoor environments. However, satellite-based systems are not suitable for indoor positioning due to low signal power inside buildings and low accuracy of 5 m. Future smart homes demand low-cost, high-accuracy and low-power indoor positioning systems that can provide accuracy of less than 5 m and enable battery operation for mobility and long-term use. We propose and implement an intelligent, highly accurate and low-power indoor positioning system for smart homes leveraging Gaussian Process Regression (GPR) model using information-theoretic gain based on reduction in differential entropy. The system is based on Time Difference of Arrival (TDOA) and uses ultra-low-power radio transceivers working at 434 MHz. The system has been deployed and tested using indoor measurements for two-dimensional (2D) positioning. In addition, the proposed system provides dual functionality with the same wireless links used for receiving telemetry data, with configurable data rates of up to 600 Kbauds. The implemented system integrates the time difference pulses obtained from the differential circuitry to determine the radio frequency (RF) transmitter node positions. The implemented system provides a high positioning accuracy of 0.68 m and 1.08 m for outdoor and indoor localization, respectively, when using GPR machine learning models, and provides telemetry data reception of 250 Kbauds. The system enables low-power battery operation with consumption of <200 mW power with ultra-low-power CC1101 radio transceivers and additional circuits with a differential amplifier. The proposed system provides low-cost, low-power and high-accuracy indoor localization and is an essential element of public well-being in future smart homes.


Sign in / Sign up

Export Citation Format

Share Document