scholarly journals CAPACITOR-LESS LOW-DROPOUT VOLTAGE REGULATOR

Author(s):  
SRIRANGANATHA SAGAR.K.N ◽  
POORNIMA N. ◽  
VIJAYA KUMAR. V

A 1.2-V 40-mA capacitor-free CMOS low-dropout regulator (LDO) for system-on-chip applications to reduce board space and external pins is presented. By utilizing damping-factor control frequency compensation on the advanced LDO structure, the proposed LDO provides high stability, as well as fast line and load transient responses, even in capacitorfree operation. The proposed LDO has been implemented in a tsmc65nm CMOS technology, and the total error of the output voltage due to line and load variations is less. Moreover, the output voltage can recover with ≈2.3μs for full load current changes. The power-supply rejection ratio at 1 MHz is 26 dB.

2000 ◽  
Vol 35 (2) ◽  
pp. 221-230 ◽  
Author(s):  
Ka Nang Leung ◽  
P.K.T. Mok ◽  
Wing-Hung Ki ◽  
J.K.O. Sin

2019 ◽  
Vol 28 (03) ◽  
pp. 1950043 ◽  
Author(s):  
M. Jahangiri ◽  
A. Farrokhi

A fast transient capacitor-less low-dropout regulator is presented in this study. The proposed LDO structure is based on Output Voltage Spike Reduction (OVSR) circuits and capacitance compensation circuits to enable a fast-transient response with ultra-low power dissipation and to make the LDO stable for a wide range of output load currents (0–50[Formula: see text]mA). The slew rate is improved with more slew current from the OVSR circuit and unity gain bandwidth is improved by a capacitor multiplayer circuit. The proposed LDO has been simulated with a standard 0.18[Formula: see text][Formula: see text]m CMOS process. The output voltage of the LDO was set to 1.2[Formula: see text]V for an input voltage of 1.4–2[Formula: see text]V. The Simulation results verify that the transient times are less than 2.8[Formula: see text][Formula: see text]s and the maximum undershoot and overshoot are 20[Formula: see text]mV while consuming only 26[Formula: see text][Formula: see text]A quiescent current. The proposed LDO is stable with an on-chip capacitor at the output node within the wide range of 1100[Formula: see text]PF.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
San-Fu Wang

This paper presents a 5 V-to-3.3 V linear regulator circuit, which uses 3.3 V CMOS transistors to replace the 5 V CMOS transistors. Thus, the complexity of the manufacturing semiconductor process can be improved. The proposed linear regulator is implemented by cascode architecture, which requires three different reference voltages as the bias voltages of its circuit. Thus, the three-output temperature-independent reference voltage circuit is proposed, which provides three accurate reference voltages simultaneously. The three-output temperature-independent reference voltages also can be used in other circuits of the chip. By using the proposed temperature-independent reference voltages, the proposed linear regulator can provide an accurate output voltage, and it is suitable for low cost, small size, and highly integrated system-on-chip (SoC) applications. Moreover, the proposed linear regulator uses the cascode technique, which improves both the gain performance and the isolation performance. Therefore, the proposed linear regulator has a good performance in reference voltage to output voltage isolation. The voltage variation of the linear regulator is less than 2.153% in the temperature range of −40°C–120°C, and the power supply rejection ratio (PSRR) is less than −42.8 dB at 60 Hz. The regulator can support 0~200 mA output current. The core area is less than 0.16 mm2.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 146
Author(s):  
Young-Joe Choe ◽  
Hyohyun Nam ◽  
Jung-Dong Park

In this paper, a low-dropout (LDO) regulator with an enhanced power supply rejection ratio (PSRR) is proposed with a feed-forward ripple cancellation technique (FFRC) in 65 nm CMOS technology. This technique significantly improves the PSRR over a wide range of frequencies, compared to a conventional LDO regulator. The LDO regulator provides 35–76.8 dB of PSRR in the range of 1 MHz–1 GHz, which shows up to 30 dB of PSRR improvement, compared with that of the conventional LDO regulator. The implemented LDO regulator has a dropout voltage of 0.22 V and a maximum load current of 20 mA. It can also provide an output voltage of 0.98 V at a range of 1–1.3 V of the input voltage. The load regulation is 2.3 mV/mA while the line regulation is 0.05 V/V. The circuit consumes 385 μA with an input voltage of 1.2 V. The total area without pads is 0.092 mm2.


Sign in / Sign up

Export Citation Format

Share Document