scholarly journals Reliability Analysis of A Radial Distributed Generation Distribution System

Author(s):  
Peyman Mazidi ◽  
G.N. Sreenivas

Distributed Generation (DG) plays an important role in current power systems with high demand growth. DG provides an alternative to the traditional electricity sources like oil, gas, coal, water, etc. and can also be used to enhance the current electrical system. DG distribution is likely to improve the reliability of a power distribution system by at least partially minimizing unplanned power interruptions to customers due to loss of utility generators or due to faults in transmission and distribution lines/equipments. In this paper, a typical distribution system is considered and to show the reliability enhancement of the system, different components (fuses, disconnects, DGs) are step by step taken into account and added to the system in five cases. Analytical methodology is used for the analysis. The results demonstrate that DG does improve the reliability of the distribution system.

2020 ◽  
Vol 12 (1) ◽  
pp. 70-83
Author(s):  
Shabbiruddin ◽  
Sandeep Chakravorty ◽  
Karma Sonam Sherpa ◽  
Amitava Ray

The selection of power sub-station location and distribution line routing in power systems is one of the important strategic decisions for both private and public sectors. In general, contradictory factors such as availability, and cost, affects the appropriate selection which adheres to vague and inexact data. The work presented in this research deals with the development of models and techniques for planning and operation of power distribution system. The work comprises a wider framework from the siting of a sub-station to load flow analysis. Work done also shows the application of quantum- geographic information system (Q-GIS) in finding load point coordinates and existing sub-station locations. The proposed integrated approach provides realistic and reliable results, and facilitates decision makers to handle multiple contradictory decision perspectives. To accredit the proposed model, it is implemented for power distribution planning in Bihar which consists of 9 divisions. A Cubic Spline Function-based load flow analysis method is developed to validate the proposal.


Author(s):  
Zuhaila Mat Yasin ◽  
Izni Nadhirah Sam’ón ◽  
Norziana Aminudin ◽  
Nur Ashida Salim ◽  
Hasmaini Mohamad

<p>Monitoring fault current is very important in power system protection. Therefore, the impact of installing Distributed Generation (DG) on the fault current is investigated in this paper. Three types of fault currents which are single line-to-ground, double line-to-ground and three phase fault are analyzed at various fault locations. The optimal location of DG was identified heuristically using power system simulation program for planning, design and analysis of distribution system (PSS/Adept). The simulation was conducted by observing the power losses of the test system by installing DG at each load buses. Bus with minimum power loss was chosen as the optimal location of DG. In order to study the impact of DG to the fault current, various locations and sizes of DG were also selected. The simulations were conducted on IEEE 33-bus distribution test system and IEEE 69-bus distribution test system. The results showed that the impact of DG to the fault current is significant especially when fault occurs at busses near to DG location.</p>


Author(s):  
Reza Tajik

Nowadays, the utilization of renewable energy resources in distribution systems (DSs) has been rapidly increased. Since distribution generation (DG) use renewable resources (i.e., biomass, wind and solar) are emerging as proper solutions for electricity generation. Regarding the tremendous deployment of DG, common distribution networks are undergoing a transition to DSs, and the common planning methods have become traditional in the high penetration level. Indeed, in conformity with the voltage violation challenge of these resources, this problem must be dealt with too. So, due to the high penetration of DG resources and nonlinear nature of most industrial loads, the planning of DG installation has become an important issue in power systems. The goal of this paper is to determine the planning of DG in distribution systems through smart grid to minimize losses and control grid factors. In this regard, the present work intending to propose a suitable method for the planning of DSs, the key properties of DS planning problem are evaluated from the various aspects, such as the allocation of DGs, and planning, and high-level uncertainties. Also depending on these analyses, this universal literature review addressed the updated study associated with DS planning. In this work, an operational design has been prepared for a higher performance of the power distribution system in the presence of DG. Artificial neural network (ANN) has been used as a method for voltage monitoring and generation output optimization. The findings of the study show that the proposed method can be utilized as a technique to improve the process of the distribution system under various penetration levels and in the presence of DG. Also, the findings revealed that the optimal use of ANN method leads to more controllable and apparent DS.


2014 ◽  
Vol 986-987 ◽  
pp. 187-191
Author(s):  
Bo Zeng ◽  
Kai Wang ◽  
Xiang Yu Kong ◽  
Yi Zeng ◽  
Qun Yang

With high penetration of distributed generation connected to the grid, distribution system will have some huge impacts, and system reliability calculation models and assessment methods are changing. Based on Monte-Carlo method, a heuristic reliability analysis method for distribution system with distributed generations was proposed in the paper, which focuses on the mode of distributed generation in parallel to system power supply. Functional role of distributed generation in the power distribution system failure and distributed power adapter with load strategies were analyzed in this method. Cases simulation analysis was used to verify its effectiveness.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 199
Author(s):  
Chengwei Lei ◽  
Weisong Tian

Fused contactors and thermal magnetic circuit breakers are commonly applied protective devices in power distribution systems to protect the circuits when short-circuit faults occur. A power distribution system may contain various makes and models of protective devices, as a result, customizable simulation models for protective devices are demanded to effectively conduct system-level reliable analyses. To build the models, thermal energy-based data analysis methodologies are first applied to the protective devices’ physical properties, based on the manufacturer’s time/current data sheet. The models are further enhanced by integrating probability tools to simulate uncertainties in real-world application facts, for example, fortuity, variance, and failure rate. The customizable models are expected to aid the system-level reliability analysis, especially for the microgrid power systems.


Author(s):  
GOPIYA NAIK. S ◽  
D. K. KHATOD ◽  
M. P. SHARMA

The concept of traditional distribution networks with unidirectional power flow is weakening due to large penetration of Distributed Generation (DG). The penetration of DG may impact the operation of a distribution network in both beneficial and detrimental ways. Some of the positive impacts of DG are voltage support, power loss reduction, support of ancillary services and improved reliability, whereas negative ones include protection coordination, dynamic stability and islanding. Therefore, proper planning methods that evaluate the composite impacts, i.e. technical, economical and environmental impacts of DG integration to existing distribution networks are very much essential. This paper presents a critical review of various impacts of DG on power distribution system. For ease of reference and to facilitate better understanding this literature is categorized and discussed under five major headings.


Sign in / Sign up

Export Citation Format

Share Document