OPTIMAL VISCOUS DAMPER PLACEMENT TO PREVENT POUNDING OF ADJACENT BUILDINGS

Author(s):  
Huseyin Cetin ◽  
Baki Ozturk ◽  
Ersin Aydin
2021 ◽  
pp. 711-731
Author(s):  
Basanagouda I. Patil ◽  
Bapugouda B. Biradar ◽  
Rashmi Doddamani

2008 ◽  
Vol 17 (3) ◽  
pp. 508-509
Author(s):  
Weng Dagen ◽  
Zuo Shaobing ◽  
Lu Xilin

2020 ◽  
Vol 2 (1) ◽  
pp. 40-47
Author(s):  
Anand Dev Bhatt

 Inter-storey drift is an important parameter of structural behavior in seismic analysis of buildings. Pounding effect in building simply means collision between adjacent buildings due to earthquake load caused by out of phase vibration of adjacent buildings. There is variation in inter-storey drift of adjacent buildings during pounding case and no pounding case. The main objective of this research was to compare the inter-storey drift of general adjacent RC buildings in pounding and no pounding case. For this study two adjacent RC buildings having same number of stories have been considered. For pounding case analysis there is no gap in between adjacent buildings and for no pounding case analysis there is sufficient distance between adjacent buildings. The model consists of adjacent buildings having 4 and 4 stories but unequal storey height. Both the buildings have same material & sectional properties. Fast non-linear time history analysis was performed by using El-centro earthquake data as ground motion. Adjacent buildings having different overall height were modelled in SAP 2000 v 15 using gap element for pounding case. Finally, analysis was done and inter-storey drift was compared. It was found that in higher building inter-storey drift is greater in no pounding case than in pounding case but in adjacent lower height building the result was reversed. Additionally, it was found that in general residential RC buildings maximum inter-storey drift occurs in 2nd floor.


Solar Energy ◽  
2021 ◽  
Vol 215 ◽  
pp. 206-219
Author(s):  
Somil Yadav ◽  
Caroline Hachem-Vermette ◽  
Sarat Kumar Panda ◽  
G.N. Tiwari ◽  
Smruti Sourava Mohapatra

2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Hytham Elwardany ◽  
Robert Jankowski ◽  
Ayman Seleemah

AbstractSeismic-induced pounding between adjacent buildings may have serious consequences, ranging from minor damage up to total collapse. Therefore, researchers try to mitigate the pounding problem using different methods, such as coupling the adjacent buildings with stiff beams, connecting them using viscoelastic links, and installing damping devices in each building individually. In the current paper, the effect of using linear and nonlinear fluid viscous dampers to mitigate the mutual pounding between a series of structures is investigated. Nonlinear finite-element analysis of a series of adjacent steel buildings equipped with damping devices was conducted. Contact surfaces with both contactor and target were used to model the mutual pounding. The results indicate that the use of linear or nonlinear dampers leads to the significant reduction in the response of adjacent buildings in series. Moreover, the substantial improvement of the performance of buildings has been observed for almost all stories. From the design point of view, it is concluded that dampers implemented in adjacent buildings should be designed to resist maximum force of 6.20 or 1.90 times the design independent force in the case of using linear or nonlinear fluid viscous dampers, respectively. Also, designers should pay attention to the design of the structural elements surrounding dampers, because considerable forces due to pounding may occur in the dampers at the maximum displaced position of the structure.


2015 ◽  
Vol 63 (1) ◽  
pp. 135-144
Author(s):  
A. Kolbrecki

Abstract The spread of fire through the façades is one of the quickest routes of spreading flames in buildings. There are three situations that can lead to the spread of fire though the façades: a) Fire from outside through hot coals, initialized/set either by a fire in a nearby building or a wooden area in flames, b) Fire started/set by an element that burns in the front of the façade (garbage container, furniture, etc.), c) Fire originated in a compartment of the building, which spreads outwards through the windows. In this paper, I focus only at the last case, which is considered to be the most dangerous and statistically the most frequently occurring. Fire spread of some type of façades were discussed: • Glazed façade, • Double-skin façade, • Façade with structural barriers, • Façade with side walls at the opening, • Façades covered by ETICS (External Thermal Insulation Composite System). Also information of influence of radiation from compartment fires to adjacent buildings was added.


Sign in / Sign up

Export Citation Format

Share Document