scholarly journals Studies on Preparation and Evaluation of Soluble 1:1 Stoichiometric Curcumin Complex for Colorectal Cancer Treatment

2021 ◽  
Vol 18 (24) ◽  
pp. 1403
Author(s):  
Jamal Moideen Muthu Mohamed ◽  
Fazil Ahmad ◽  
Ali Alqahtani ◽  
Taha Lqahtani ◽  
Venkatesan Krishna Raju ◽  
...  

This study investigates the complex of curcumin (CMN), which has enhanced solubility and hence, higher cytotoxicity compared to free CMN. Insilco molecular modelling and phase solubility (PS) studies were performed with the drug and carriers for interaction. The complex was characterized by in vitro drug release, FT-IR, PXRD, TGA, DSC, SEM, DLS, and functionalized dyeing test. The result showed that the CMN-PEG6000 complex produced significant properties of solubility (≈ 190 folds) and dissolution (80.68 % at 30 min), with stability constants equivalent to 309 and 377 M-1 at 25 and 37 °C, respectively. It exhibited AL type of isotherm indicating 1:1 stoichiometry. The result from the in vitro cytotoxicity showed that 50 % inhibition (IC50) was achieved on the SW480 and Caco-2 cells at an amount of complex that was considerably lesser than free CMN. Apoptosis study showed that the cells underwent cell death mainly by apoptosis with a small number by necrosis. HIGHLIGHTS Enhanced curcumin solubility up to 190 fold higher than pure curcumin was investigated The phase solubility results of curcumin range from 5.7×10-4 M-1 and 7.8×10-4 M-1 at 25 and 37 °C, respectively First time of novel dyeing test was performed with complex of curcumin, signified its solubility This study provides useful approach for obtaining curcumin products with maximum aqueous solubility GRAPHICAL ABSTRACT

2021 ◽  
Vol 14 (9) ◽  
pp. 939
Author(s):  
Jamal Moideen Muthu Mohamed ◽  
Ali Alqahtani ◽  
Barkat A. Khan ◽  
Adel Al Fatease ◽  
Taha Alqahtani ◽  
...  

This study was designed to investigate the effects of curcumin (CMN) soluble complex (SC) prepared by melt casting (HM) and hot-melt extrusion (HME) technology. Phase solubility (PS) study, in silico molecular modeling, aqueous solubility, drug release, and physicochemical investigation including a novel dyeing test was performed to obtain an optimized complex by a central composite design (CCD). The results show that the HME-SC produces better improvements towards solubility (0.852 ± 0.02), dissolution (91.87 ± 0.21 % at 30 min), with an ideal stability constant (309 and 377 M−1 at 25 and 37 °C, respectively) and exhibits AL type of isotherm indicating 1:1 stoichiometry. Intermolecular hydrogen bonding involves the formation of SC, which does not undergo any chemical modification, followed by the complete conversion of the amorphous form which was identified by XRD. The in vitro cytotoxicity showed that IC50 was achieved in the SW480 (72 µM.mL−1) and Caco-2 (40 µM.mL−1) cells while that of pure CMN ranged from 146 to 116 µM/mL−1. Apoptosis studies showed that cell death is primarily due to apoptosis, with a low rate of necrosis. In vivo toxicity, confirmed by the zebrafish model, exhibited the safety of the HME-SC. In conclusion, the HME-SC potentially enhances the solubility and cytotoxicity to the treatment of colorectal cancer (CRC).


2020 ◽  
Vol 11 (4) ◽  
pp. 280-284
Author(s):  
Vaishali Yogesh Londhe ◽  
Sreevidya Ramesh Krishnan

Ziprasidone (ZPR) is an antipsychotic agent having less solubility. It is used for the treatment of schizophrenia. Complexation of hydrophobic drugs with cyclodextrins leads to enhanced solubility and dissolution. In this study, inclusion complexes were prepared by different methods, using ZPR, β-cyclodextrin (β-CD), and different auxiliary agents like hydrophilic polymer and hydroxy acid (1:1:0.5) to improve the aqueous solubility. The characterization of the ternary complexes was carried out using solubility study, Differential scanning calorimetry (DSC), Powder X-ray diffraction (PXRD), Fourier transformation infrared spectroscopy (FT-IR) and in vitro dissolution studies. DSC, XRD, and FT-IR studies showed interaction in drug, cyclodextrin, and auxiliary agents which are confirmed by enhancement of solubility and dissolution. Spray-dried dispersion showed less crystallinity and higher solubility as compared to the kneading method for both citric acid and Lutrol® F-68. Thus, the investigation concludes that the presence of the auxiliary agent has a synergistic action on complexation with cyclodextrin, which helps to modify the physicochemical properties of the drug.


Author(s):  
Bipul Nath ◽  
Santimoni Saikia

In the present investigation, sodium alginate based multiparticulate system overcoated with time and pH dependent polymer was studied in the form of oral pulsatile system to achieve pulsatile with sustained release of aceclofenac for chronotherapy of rheumatoid arthritis seven batches of micro beads with varying concentration of sodium alginate (2-5 %) were prepared by ionotropic-gelation method using CaCl2 as cross-linking agent. The prepared Ca-alginate beads were coated with 5% Eudragit L100 and filled into pulsatile capsule with varying proportion of plugging materials. Drug loaded microbeads were investigated for physicochemical properties and drug release characteristics. The mean particle sizes of drug-loaded microbeads were found to be in the range 596±1.1 to 860 ± 1.2 micron and %DEE in the range of 65-85%. FT-IR and DSC studies revealed the absence of drug polymer interactions. The release of aceclofenac from formulations F1 to F7 in buffer media (pH 6.8) at the end of 5h was 65.6, 60.7, 55.7, 41.2, 39.2, 27 and 25% respectively. Pulsatile system filled with eudragit coated Ca-alginate microbeads (F2) showed better drug content, particle size, surface topography, in-vitro drug release in a controlled manner. Different plugging materials like Sterculia gum, HPMC K4M and Carbopol were used in the design of pulsatile capsule. The pulsatile system remained intact in buffer pH 1.2 for 2 hours due to enteric coat of the system with HPMCP. The enteric coat dissolved when the pH of medium was changed to 7.4. The pulsatile system developed with Sterculia gum as plugging material showed satisfactory lag period when compared to HPMC and Carbopol.


2021 ◽  
Vol 14 (5) ◽  
pp. 411
Author(s):  
Md. Khalid Anwer ◽  
Muzaffar Iqbal ◽  
Mohammad Muqtader Ahmed ◽  
Mohammed F. Aldawsari ◽  
Mohd Nazam Ansari ◽  
...  

In the current study, the effect of poloxamer 188 on the complexation efficiency and dissolution of arbidol hydrochloride (ADL), a broad-spectrum antiviral agent, with β-cyclodextrin (β-CD) was investigated. Phase solubility studies confirmed a stoichiometry of a 1:1 ratio for both ADL:β-CD and ADL/β-CD with a 1% poloxamer 188 system with an AL type of phase solubility curve. The stability constants (K1:1) calculated from the AL type diagram were 550 M-1 and 2134 M-1 for AD:β-CD and ADL/β-CD with 1% poloxamer 188, respectively. The binary ADL/β-CD and ternary ADL/β-CD with 1% poloxamer 188 complexes were prepared by kneading and a solvent evaporation method and were characterized by aqueous solubility, FTIR, PXRD, DSC and SEM in vitro studies. The solubility (13.1 fold) and release of ADL were markedly improved in kneaded ternary ADL/β-CD with 1% poloxamer 188 (KDB). The binding affinity of ADL and β-CD was confirmed by 1H NMR and 2D ROSEY studies. The ternary complex (KDB) was further subjected for in vivo pharmacokinetic studies in rats and a significant improvement in the bioavailability (2.17 fold) was observed in comparison with pure ADL. Therefore, it can be concluded that the solubilization and bioavailability of ADL can be remarkably increased by ADL/β-CD complexation in the presence of a third component, poloxamer 188.


Author(s):  
Moon Rajkumar ◽  
Gattani Surendra

 Objective: The objective of this study was to increase the solubility and dissolution rate of paliperidone (PAL) by preparing its nanocrystals using different hydrophilic carriers by antisolvent precipitation technique.Methods: The nanoparticles (NP) were characterized for aqueous solubility, drug content, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, particle size, and in vitro-in vivo analysis.Results: The results showed improved solubility and dissolution rate of NPs when compared to pure drug and physical mixture (PM). Solubility data showed a linear graph giving an indication that there is a gradual increase in the solubility profile of the drug with an increase in concentration of the carriers. At highest concentration, the solubility of NPs with Plasdone S630, Povidone K-25, and PVP K-30 found to be increased by 12 folds, 9 folds and 6 folds, respectively, as compared to pure drug. The release profile of NPs with Plasdone S630 in terms of dissolution efficiency at 60 min (DE60), initial dissolution rate (IDR), amount release in 15 min (Q15 min), and time for 75% release (t75%) shows better results when compared to pure drug, PM, and also NPs with povidone 25 and povidone 30. In vivo study reveals that optimized NPs elicited significant induction of cataleptic behavior which is the indication of antipsychotic agent(s) effect.Conclusion: The process antisolvent precipitation under constant stirring may be a promising method to produce stable PAL NPs with markedly enhanced solubility and dissolution rate due to nanonization with the increased surface area, improved wettability, and reduced diffusion pathway.


Author(s):  
Sumit Kumar ◽  
Dinesh Chandra Bhatt

Fabrication and evaluation of the Isoniazid loaded sodium alginate nanoparticles (NPs) was main objective of current investigation. These NPs were engineered using ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading, and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading and encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70% respectively. Amongst all batches studied formulation F-8 showed the best sustained release of drug at the end of 24 hours.


Author(s):  
Jasvanth E ◽  
Teja D ◽  
Mounika B ◽  
Buchi N Nalluri

Objective: The present investigation was aimed at preparation and evaluation of mouth dissolving films (MDFs) of Ramipril to enhance patient convenience, compliance and to improve bioavailability. Methods: MDFs with 0.5% w/w Ramipril were prepared by a solvent casting method using a wet film applicator. The effects of film formers, wetting/solubilizing, saliva stimulating agents and film modifiers on the physicomechanical and in vitro Ramipril release from MDFs were evaluated. Results: The MDFs prepared were transparent, smooth and showed no re-crystallization upon storage. MDFs casted with hydroxypropyl methylcellulose (HPMC) E3 as film former and polyethylene glycol (PEG-400) as plasticizer showed superior Ramipril release rates and good physicomechanical properties when compared to MDFs with E5 and E15 as film formers. HPMC E3 MDFs with polyvinyl pyrrolidone K30 (PVP K30) and sodium lauryl sulphate (SLS) gave superior drug release properties than MDFs without PVP K30 and SLS. The HPMC E3 MDFs with citric acid (CA) as saliva stimulating and xylitol as soothing agent gave significantly superior in vitro drug release than the MDFs without CA and xylitol. Release kinetics data reveals diffusion as a drug release mechanism. Conclusion: From the obtained results, it can be concluded that the administration of Ramipril as MDF may provide a quick onset of action with enhanced oral bioavailability and therapeutic efficacy.


2020 ◽  
Vol 24 (08) ◽  
pp. 1047-1053
Author(s):  
Emre Güzel ◽  
Barış Seçkin Arslan ◽  
Kübra Çıkrıkçı ◽  
Adem Ergün ◽  
Nahit Gençer ◽  
...  

The preparation and assessment of carbonic anhydrase and paraoxonase enzyme inhibition properties of 3-(2-(5-amino-4-(4-bromophenyl)-3-methyl-1H-pyrazol-1-yl)ethoxy)phthalonitrile (2) and its nitrogen-containing non-peripheral phthalocyanine derivatives (3 and 4) are reported for the first time. The new phthalonitrile and its phthalocyanine derivatives have been elucidated by FT-IR spectroscopy, 1H-NMR, [Formula: see text]C-NMR, mass and UV-vis spectroscopy. The results demonstrated that all synthesized compounds moderately inhibited carbonic anhydrase and paraoxonase enzymes. Among the compounds, the most active ones were found to be compound 4 for PON (Ki : 0.14 [Formula: see text]M), compound 3 for hCA I (Ki : 22.52 [Formula: see text]M) and compound 1 for hCA II (Ki : 13.62 [Formula: see text]M).


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1959
Author(s):  
Jiao Wang ◽  
Jianbo Li ◽  
Jie Ren

In this study, a series of poly(lactic-co-glycolic acid) (PLGA) microspheres with different particle sizes for arterial embolization surgery were prepared. The polydopamine (PDA) and polydopamine/polyethyleneimine (PDA/PEI) were respectively coated on the PLGA microspheres as shells, in order to improve the hydrophilicity and dispersibility of PLGA embolization microspheres. After modification, with the introduction of PDA and PEI, many hydrophilic hydroxyl and amine groups appeared on the surface of the PLGA@PDA and PLGA@PDA/PEI microspheres. SEM images showed the morphologies, sizes, and changes of the as-prepared microspheres. Meanwhile, the XPS and FT-IR spectra demonstrated the successful modification of the PDA and PEI. Water contact angles (WCAs) of the PLGA@PDA and PLGA@PDA/PEI microspheres became smaller, indicating a certain improvement in surface hydrophilicity. In addition, the results of in vitro cytotoxicity showed that modification had little effect on the biosafety of the microspheres. The modified PLGA microspheres suggest a promising prospective application in biomedical field, as the modified microspheres can reduce difficulties in embolization surgery.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 2966-2974
Author(s):  
Madhavi K ◽  
Neelesh M

The current project is mainly focussed on the application of liquisolid (LS) technique in the enhancement of dissolution profile of flurbiprofen. Flurbiprofen is a NSAID indicated for acute and chronic osteoarthritis, rheumatoid arthritis and spondylitis. It is selected as model drug as it is a BCS Class II drug and has very poor aqueous solubility of 10.45 ± 3.2μg/ml. Hence, this study was designed to improve the dissolution rate of flurbiprofen using LS technique. Initially, saturation solubility studies were performed to select liquid vehicle showing higher solubility of drug to obtain liquid medication. PEG 600 was selected as non-volatile solvent, used at three different drug concentrations of 33.33, 40 and 50 % w/w to form LS formulations. Further, they were converted to powder by means of  Avicel PH 102 and Aerosil 200 as carrier and coating materials to prepare LS formulations. Rheological tests were performed for the LS powder systems to study the flow properties. Later, several LS formulations were prepared, encapsulated in hard gelatin capsules. These capsules containing LS systems were subjected to evaluation tests and in vitro drug release studies. The results of dissolution profile of formulation CF3 showed maximum release of 98% within 30 minutes which was two folds higher than that of conventional capsule. FTIR studies revealed no drug-excipient interaction. DSC, SEM and PXRD studies revealed that drug in the system was completely soluble and available in molecularly dispersed state. Finally, it can be concluded that LS technique proved to enhance the dissolution profile of Flurbiprofen. 


Sign in / Sign up

Export Citation Format

Share Document