Synthesis, in vitro inhibition effect of novel phthalocyanine complexes as carbonic anhydrase and paraoxonase enzyme inhibitors

2020 ◽  
Vol 24 (08) ◽  
pp. 1047-1053
Author(s):  
Emre Güzel ◽  
Barış Seçkin Arslan ◽  
Kübra Çıkrıkçı ◽  
Adem Ergün ◽  
Nahit Gençer ◽  
...  

The preparation and assessment of carbonic anhydrase and paraoxonase enzyme inhibition properties of 3-(2-(5-amino-4-(4-bromophenyl)-3-methyl-1H-pyrazol-1-yl)ethoxy)phthalonitrile (2) and its nitrogen-containing non-peripheral phthalocyanine derivatives (3 and 4) are reported for the first time. The new phthalonitrile and its phthalocyanine derivatives have been elucidated by FT-IR spectroscopy, 1H-NMR, [Formula: see text]C-NMR, mass and UV-vis spectroscopy. The results demonstrated that all synthesized compounds moderately inhibited carbonic anhydrase and paraoxonase enzymes. Among the compounds, the most active ones were found to be compound 4 for PON (Ki : 0.14 [Formula: see text]M), compound 3 for hCA I (Ki : 22.52 [Formula: see text]M) and compound 1 for hCA II (Ki : 13.62 [Formula: see text]M).

Author(s):  
Aseel Alsarahni ◽  
Zuhair Muhi Eldeen ◽  
Elham Al-kaissi ◽  
Ibrahim Al- Adham ◽  
Najah Al-muhtaseb

<p><strong>Objective: </strong>To design and synthesize amino acetylenic and thiocarbonate of 2-mercapto-1,3-benthiazoles as potential antimicrobial agents.</p><p><strong>Methods: </strong>A new series of 2-{[4-(t-amino-1-yl) but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole derivatives (AZ1-AZ6), and S-1,3-benzothiazol-2-yl-O-alkyl carbonothioate derivatives were synthesised, with the aim that the target compounds show new and potential antimicrobial activity. The elemental analysis was indicated by the EuroEA elemental analyzer, and biological characterization was via IR, <sup>1</sup>H-NMR, [13]C-NMR, DSC were determined with the aid of Bruker FT-IR and Varian 300 MHz spectrometer using DMSO-d<sub>6</sub> as a solvent.<em> </em><em>In vitro </em>antimicrobial activity, evaluation was done for the synthesised compounds, by agar diffusion method and broth dilution test. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. <em></em></p><p><strong>Results: </strong>The IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, DSC and elemental analysis were consistent with the assigned structures. Compound of 2-{[4-(4-methylpiperazin-1-yl)but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole (AZ1), 2-{[4-(2-methylpiperidin-1-yl)but-2-yn-1-yl]sulfanyl}-1,3-benzothiazole (AZ2), 2-{[4-(piperidin-1-yl) but-2-yn-1-yl]sulfanyl}-1, 3-benzothiazole (AZ6), S-1,3-benzothiazol-2-yl-O-ethyl carbonothioate (AZ7), and S-1,3-benzothiazol-2-yl-O-(2-methylpropyl) carbonothioate (AZ9) showed the highest antimicrobial activity against <em>Pseudomonas aeruginosa </em>(<em>P. aeruginosa</em>), AZ-9 demonstrated the highest antifungal activity against <em>Candida albicans </em>(<em>C. albicans</em>), with MIC of 31.25 µg/ml.</p><p><strong>Conclusion: </strong>These promising results promoted our interest to investigate other structural analogues for their antimicrobial activity further.</p>


2018 ◽  
Vol 232 (2) ◽  
pp. 281-293 ◽  
Author(s):  
Kanak Roy ◽  
Subhadeep Saha ◽  
Biswajit Datta ◽  
Lovely Sarkar ◽  
Mahendra Nath Roy

AbstractAssembly of pyridine-2-aldoxime drug with cucurbit [6]uril (CB[6]) has been investigated by1H-NMR and 2D-ROESY NMR, UV-Vis spectroscopy, FT-IR spectroscopy, surface tension and conductivity measurements in aqueous saline environment. The distinct cationic receptor feature and the cavity dimension of the CB[6] emphasize that the macro-cyclic host molecule remain as complex with the nerve stimulus drug molecule. The results obtained from surface tension and specific conductivity measurements suggest 1:1 inclusion complex formation between drug and CB[6]. The stability constant evaluated by UV-Vis spectroscopic approach is 2.21×105M−1at 298.15 K, which indicates that the complex is sufficiently stable at physiological temperature.


2012 ◽  
Vol 9 (2) ◽  
pp. 962-969 ◽  
Author(s):  
Zahraa Salim M. Al-Garawi ◽  
Ivan Hameed R. Tomi ◽  
Ali Hussein R. Al-Daraji

In this study, two new Schiff base compounds derived from the condensation reaction ofL-glycine andL-tryptophan with 4-methylbenzal-dehyde have been synthesized. The Schiff base compounds were characterized by FT-IR, UV and1H NMR spectroscopy. Their effects on the activity of total (ACP), prostatic (PAP) and non prostatic (NPA) acid phosphatase enzymes were studied. The Schiff base derived fromL-glycine (A) demonstrated inhibition effect on the ACP and NPA activities and activation effect on PAP activity. The Schiff base derived fromL-tryptophan (B) demonstrated semi fixed inhibition effects on the ACP and NPA activities at high concentrations (5.5×10-2, 5.5×10-3and 5.5×10-4M) and activator effect at low concentration (5.5×10-5M) while it was exhibits as activator on PAP activity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vartika Tomar ◽  
Neeraj Kumar ◽  
Ravi Tomar ◽  
Damini Sood ◽  
Neerupma Dhiman ◽  
...  

AbstractIn present investigation, an attempt was undertaken to modify the C-9 position of noscapine (Nos), an opium alkaloid to yield 9 -hydroxy methyl and 9 -carbaldehyde oxime analogues for augmenting anticancer potential. The synthesis of 9-hydroxy methyl analogue of Nos was carried out by Blanc reaction and 9-carbaldehyde oxime was engineered by oxime formation method and characterized using FT-IR, 1H NMR, 13C NMR, mass spectroscopy, and so on techniques. In silico docking techniques informed that 9-hydroxy methyl and 9-carbaldehyde oxime analogues of Nos had higher binding energy score as compared to Nos. The IC50 of Nos was estimated to be 46.8 µM signficantly (P < 0.05) higher than 8.2 µM of 9-carbaldehyde oxime and 4.6 µM of 9-hydroxy methyl analogue of Nos in U87, human glioblastoma cells. Moreover, there was significant (P < 0.05) difference between the IC50 of 9-carbaldehyde oxime and 9-hydroxy methyl analogue of Nos. Consistent to in vitro cytotoxicity data, 9-hydroxy methyl analogue of Nos induced significantly (P < 0.05) higher degree of apoptosis of 84.6% in U87 cells as compared to 78.5% and 64.3% demonstrated by 9-carbaldehyde oxime and Nos, respectively. Thus the higher therapeutic efficacy of 9-hydroxy methyl analogue of Nos may be credited to higher solubility and inhibitory constant (K).


2017 ◽  
Vol 12 (2) ◽  
pp. 20 ◽  
Author(s):  
Dhineshkumar Manoharan ◽  
Kannan Kulanthai ◽  
Gnanavel Sadhasivam ◽  
Vijayan Raji ◽  
Paalvannan Thayumanavan

<p class="Abstract">Series of indoline derivatives were synthesized using N-(4-aminophenyl)indoline-1-carbothiamide as a precursor. The confirmation of synthesized compounds was done by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, LC-MS (ESI) and FT-IR. In vitro antidiabetic activity of synthesized indoline derivatives were examined by standard α-amylase inhibition assay. The compounds 4a (IC<sub>50 </sub>= 52.1 µg/mL) and 4b (IC<sub>50 </sub>= 57.7 µg/mL) showed potent α-amylase inhibition activity. The compounds 3a (IC<sub>50 </sub>= 62.2 µg/mL) and 3b (IC<sub>50 </sub>= 60.7 µg/mL) showed moderate antidiabetic activity.</p><p class="Abstract"><strong>Video Clip of Methodology</strong>:</p><p class="Abstract">19 min 21 sec   <a href="https://www.youtube.com/v/k5WdfpM-E8U">Full Screen</a>   <a href="https://www.youtube.com/watch?v=k5WdfpM-E8U">Alternate</a></p>


2015 ◽  
Vol 10 (2) ◽  
pp. 308 ◽  
Author(s):  
Mao-Chuan Fan ◽  
Guang-Ye Han ◽  
Xin-Jun Zhang ◽  
Hui-Fang Xi

<p>This study was aimed to evaluate anticancer potential of newer synthesize 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines and its derivatives. All newly furnished scaffolds were subjected to screening for their in vitro anticancer potential against DU-145 and PC-3 prostate cancer cell lines using SRB and MMT bioassays. The structures of final compounds were confirmed with the aid of FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR spectroscopy and CHN analysis. Bioassay studies suggested that all thiadiazines were promising cytotoxic agents with % cytotoxicity ranging from 44.39-71.24%, whereas potent GI<sub>50</sub> level in the range 11.96-32.51 µg/mL and results were comparable to the potencies of control drugs adriamycin and doxorubicin. Variation of heterocyclic pharmacophores along with the C-5 position of 1,2,4-triazole in terms of quinoline, quinazoline, coumarin and pyridine lead to the different SAR predictions in which quinoline and benzimidazole moieties found most promising.</p><p> </p>


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
A. Bharathi ◽  
Selvaraj Mohana Roopan ◽  
C. S. Vasavi ◽  
Punnagai Munusami ◽  
G. A. Gayathri ◽  
...  

Anin vitroantidiabetic activity onα-amylase andα–glucosidase activity of novel 10-chloro-4-(2-chlorophenyl)-12-phenyl-5,6-dihydropyrimido[4,5-a]acridin-2-amines (3a–3f) were evaluated. Structures of the synthesized molecules were studied by FT-IR,1H NMR,13C NMR, EI-MS, and single crystal X-ray structural analysis data. Anin silicomolecular docking was performed on synthesized molecules (3a–3f). Overall studies indicate that compound3eis a promising compound leading to the development of selective inhibition ofα-amylase andα-glucosidase.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Rawan Al-Saheb ◽  
Sami Makharza ◽  
Feras Al-battah ◽  
Rajab Abu-El-Halawa ◽  
Tawfeq Kaimari ◽  
...  

Abstract Chalcones and their derivatives are becoming increasingly popular due to their various pharmacological effects. Chalcone molecules may be extracted from natural resources, entirely synthesised, or biosynthesised by modifying the natural ones. In the present study, five pyrazole-based adamantyl heterocyclic compounds were synthesised by condensation of 1-adamantyl chalcone with substituted phenylhydrazine. The products were characterised by using ¹H NMR, ¹³C NMR and FT-IR spectroscopy. The microbiological activity of these compounds was investigated against bacteria and fungi. The new compounds showed good to moderate activity against the microbial species used for screening. All developed molecules showed antibacterial activity against Gram-negative and Gram-positive. These molecules showed antifungal activities against Fusarium oxysporum fungus and in a dose-dependent manner, apart from RS-1 molecules which showed compromised antifungal activity and even at a high dose.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Ibrahim A. M. Saraireh ◽  
Mohammednoor Altarawneh ◽  
Jibril Alhawarin ◽  
Mahmoud Salman ◽  
Abdel Aziz Abu-Yamin ◽  
...  

Schiff base diethyl 4,4-(pentane-2,4-diylidenebis(azanylylidene))benzoate (1) as a new ligand (L) was prepared by the reaction of acetylacetone with benzocaine in the ratio of 1 : 1. Two transition-metal complexes, [Ni(II)(LCl(HOEt))] (2) and [Zn(II)(LCl(HOEt))] (3), have been synthesized from metal salts with didentate Schiff base ligand (L) and characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR UV-Vis spectroscopy, and magnetic susceptibility. The biological activity of the complexes was studied. In addition, the M06-2x density function theory method and the 6-31G(d) basic set were applied to determine the optimized structures of 1–3 and to determine their IR and 1H NMR, 13C NMR spectra theoretically. The data are in good agreement with the experimental results. The geometries of complexes 2 and 3 were determined to be square-planar for 2 and tetrahedral for 3.


2021 ◽  
Author(s):  
Fatimah Fateh ◽  
Ayşe Yildirim ◽  
Asif Ali Bhatti ◽  
Mustafa YILMAZ

Abstract Calixarenes, which have a great place in supramolecular chemistry, has become the most prominent macrocyclic compounds in synthetic organic chemistry due to their easy synthesis and functionalization. In this study, p-tert-butyl calix[4]arene dihydrazide derivative was synthesized and then reacted with 3-oxo-3,4-dihydro-2H-benzo[b][1, 4] thiazin-2-ylideneacetyl chloride to prepare new calixarene based chromophore compound 4. The structure of the synthesized compound was elucidated by spectroscopic methods such as 1H-NMR 13C-NMR and FT-IR spectroscopy. Chromogenic and fluorescence properties of compound 4 were evaluated. It was observed from both studies that compound 4 was Co2+ selective and shows fluorescence Switched-off behavior. Stoichiometry, binding constant and the detection limit was calculated. The stoichiometry between compound 4 and Co2+ was found to be 1:1. The binding constant value (K) was calculated as 666.67 M− 1 using Benesi–Hildebrand equation, while the detection limit for Co2+ ion was calculated as 0.0465 µM.


Sign in / Sign up

Export Citation Format

Share Document