scholarly journals A Field Study of Atmospheric Corrosion of Carbon Steel after Short Exposure in Pelabuhan Ratu, West Java Province, Indonesia

2021 ◽  
Vol 18 (17) ◽  
Author(s):  
Gadang PRIYOTOMO ◽  
Siska PRIFIHARNI ◽  
Lutviasari NURAINI ◽  
Joko TRIWARDONO ◽  
Ahmad ROYANI ◽  
...  

The investigation of atmospheric corrosion of mild carbon steel as representative of offshore infrastructure has been carried out in the marine tropical of Pelabuhan Ratu, West Java, Indonesia. They are exposed up to 76 days of periods, and their corrosion rates are determined according to ASTM G1-03. The surface morphology, the elemental compositions and compounds were observed using a scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively.  The environmental parameters of the test site are monitored during exposure, such as air temperature, relative humidity (RH), airborne salinity and dew temperature. Based on the results, the corrosion rates of steels were 2.79 and 2.8 mpy within the 27 and 76 days exposures, respectively. The presence of chloride deposition on the surface of steel can increase the severity of corrosion. Moreover, the detrimental effect of chloride was observed in rust product, which was covered by an oxygen element. The main phases of rust products present were magnetite (Fe3O4) and hematite (α-Fe2O3.H2O). Several cracks were observed in the rust layer, which tended to exfoliate and lose adherence and protectiveness from further corrosion attack. HIGHLIGHTS The presence of chloride deposition on the surface of steel can increase the severity of corrosion. The severity of corrosion attack mainly depends on the exposure time and some climatic parameters, such as relative humidity (RH), air temperature and chloride airborne. The uniform distribution of the chloride tends to increase the production of ferrous chloride in high RH condition and the aqueous layer deposited on carbon steel. There are two phases on corroded carbon steel such as hematite (α-Fe2O3.H2O) and Magnetite (Fe3O4) after exposure GRAPHICAL ABSTRACT

2020 ◽  
Vol 20 (5) ◽  
pp. 1032
Author(s):  
Gadang Priyotomo ◽  
Lutviasari Nuraini ◽  
Siska Prifiharni ◽  
Ahmad Royani ◽  
Sundjono Sundjono ◽  
...  

The investigation of corrosion for carbon steel and galvanized steel has been conducted in the marine atmosphere of Eretan and Ciwaringin Districts, West Java Province. The exposure time of the field test was up to 200 days, and their corrosion rates are determined according to weight loss method. The objective of the work is to elucidate the corrosion behavior of those alloys which is affected by distances from coastline and environmental condition. The magnitude of corrosion rate for carbon steel was 20 times as high as that for galvanized steel in both districts The distance from coastline has significantly affected for the magnitude of corrosion rate, where that both alloys in Ciwaringin is lower than that in Eretan. The deposition of chloride ion in Eretan and Ciwaringin Districts were 4.305 mg/m2 day and 1.863 mg/m2 day, respectively, where the higher chloride ion can tend to increase the corrosion rates. Relative humidity (RH) which is over 60% has essential role for corrosion process as well as rainfall. The uniform corrosion attack was observed both alloys after exposure. The corrosion product phases of galvanized steel exhibits as zincite, hydrozincite and simonkolleite in Eretan as the typical coastline atmosphere phases but not in Ciwaringin. The formation of rust product for both metals lead the decrease of further corrosion attack due to the barrier between metal and environment. The usage of galvanized steel is remarkable to minimize corrosion attack compared to that of carbon steel in tropical coastline.


2018 ◽  
Vol 55 (5B) ◽  
pp. 272
Author(s):  
Pham Duy Nam

The corrosion of materials is a result of complex impact from many climatic factors such as temperature, humidity, air pollutant content in the air, rainfall etc. In addition, the corrosion rate of metals can be measured. Each climatic zone is characterized by its corrosion rate. This article presents the testing results to determine the corrosion rate of carbon steel, copper, aluminum and zinc in 12 districts characterizing different climate zones of Vietnam. Testing, evaluation, and classification of atmospheric corrosion were conducted in accordance with the standard ISO 9223. The results show that for all types of studied metals, their corrosion rates which are determined from climatic data are higher than the corrosion rates in reality, especially for carbon steel and aluminum. This difference is more visible in the rural areas.


2012 ◽  
Vol 42 ◽  
pp. 171-185 ◽  
Author(s):  
M.O.G. Portella ◽  
K.F. Portella ◽  
P.A.M. Pereira ◽  
P.C. Inone ◽  
K.J.C. Brambilla ◽  
...  

2005 ◽  
Vol 475-479 ◽  
pp. 221-224
Author(s):  
Yuji Hosoya ◽  
Tadashi Shinohara ◽  
Shin-ichi Motoda ◽  
Wataru Oshikawa

Atmospheric corrosion for carbon steel was discussed with taking notice of the relation between the corrosion rate, CR, and the thickness of adsorbed water film, d, onto deposited sea salt. Amount of water adsorbed onto sea salt was measured under various conditions of amount of deposited sea salt, Ws, and relative humidity, RH. Derived concentration of the solution film was compared with that calculated thermodynamically. Corrosion amount of carbon steel specimens exposed for a month under various Ws and RH was measured and CR along with d were obtained for each condition. The relations of CR to d had the same tendency as is found on “moist corrosion” and “wet corrosion” in Tomashov’s model; However, it showed a maximum CR = 0.29mm/y at d = 56µm, thicker than that reported by Tomashov.


2019 ◽  
Vol 811 ◽  
pp. 141-146
Author(s):  
Lukman Hakim Budi ◽  
Subawi Handoko

This study indicated the deterioration of the steel pipe and beam structure in west coast Sumatra made of ASTM A252, and also pipeline along Riau land-Jambi - Batam Island. It was found that severest corrosion occurs at the rate up to 1.6 mm/year (63 mpy) on the steel cross beam-800 on west coast Sumatra. Whereas the corrosion rates on ASTM A234 and API 5L steel structures along the pipeline across Riau - Jambi - Batam occur from the high-to-severe up to 0.43 mm/year (17 mpy) mainly on pipe elbow 16” diameter. Due to this corrosion attack, the steel infrastructure requires whole protection including sacrificial thickness, surface coating, and cathodic protection. The corrosion attack data may be used to provide the required effort and its priority to protect the steel pile and pipe infrastructures on Sumatra Island.


DYNA ◽  
2015 ◽  
Vol 82 (190) ◽  
pp. 128-137 ◽  
Author(s):  
John Fredy Ríos Rojas ◽  
Diego Escobar Ocampo ◽  
Edwin Arbey Hernández García ◽  
Carlos Enrique Arroyave Posada

<p>This paper presents the first systematic atmospheric corrosion assessment in Bogota. Main facts about the study are related with special characteristics of the City, such as population (more than eight million inhabitants), and altitude (2600 m over the sea level). Relative humidity, temperature, and SO2 concentration were measured. Simultaneously, corrosion rate of AIS/SAE 1006 plain steel was measured along one year. Results show that atmospheric corrosion is between C<sub>2</sub> – C<sub>3</sub> levels, according to the ISO 9223 standard. Nevertheless, estimations from meteorological parameters produce lower corrosivities and, taking into account SO2 concentrations, corrosivities in places with higher relative humidity, are higher than corrosivities measured on steel coupons. In general, the main pollution problem is particulate matter, but higher corrosion rates were directly associated with SO2 levels. Gaps between found results and international estimation methodologies are evident. Some explanations about that, are proposed.<strong></strong></p>


2012 ◽  
Vol 629 ◽  
pp. 240-244
Author(s):  
Zhi Fen Wang ◽  
Jian Rong Liu ◽  
Li Xin Wu ◽  
Yi Qiang Sun ◽  
Rong Dong Han

The corrosion resistances of a weathering steel SPA-H and a carbon steel Q345 after atmospheric corrosion rests of two cities were measured. The results showed that the corrosion resistance was better for SPA-H than Q345 based on the corrosion rate. The corrosion rates of two steels at Qionghai city were lower than those of Jiangjin city. The characterization of the rusts showed the rust layer on SPA-H was denser and thinner than that of Q345. The rust layers were mainly composed of goethite (α-FeOOH) with a few of lepidocrocite (γ-FeOOH). SPA-H had better weatherability attributed to the alloying elements of copper, chromium and phosphorus enriched in the rust layer. The environment factor such as the sedimentation of SO2 has more effect on the corrosion rates than other factors such as alloy elements.


Sign in / Sign up

Export Citation Format

Share Document