scholarly journals Modeling Support Loss in Torsional Mode Vibrations of a Micromechanical Disk Resonator with Two L-Shaped Support Beams

2017 ◽  
Vol 7 (1) ◽  
pp. 1353-1357
Author(s):  
M. Bagheri ◽  
A. Bijari ◽  
M. Imanparast ◽  
M. Raghebi

In this paper, a new micromechanical disc resonator with two L-shaped horizontal support beams in torsional mode vibrations has been proposed. The proposed micromechanical resonator has been studied in the field of natural frequencies and support loss. In order to verify the findings of natural frequencies, the analytical results are compared to the simulation results given by ANSYS software. A good agreement between analytical and simulation results is shown. In addition a closed-form equation for support loss quality factor in torsional mode vibrations of the proposed micromechanical resonator is presented. The results show that using L-shaped support beams can improve the support loss quality factor up to two times.

1972 ◽  
Vol 23 (2) ◽  
pp. 109-120 ◽  
Author(s):  
T C Cannon ◽  
J Genin

SummaryThe three-dimensional equations of motion of a flexible towed cable are developed. A closed-form approximation for the equilibrium shape of a cable subjected to arbitrary aerodynamic loading is developed and used in the study of a heavy, vibrating tow cable. Natural frequencies of vibration and cable shapes are computed for typical cables and are shown to be in good agreement with exact, numerically obtained values.


2003 ◽  
Vol 125 (4) ◽  
pp. 527-530 ◽  
Author(s):  
M. Carmona ◽  
S. Marco ◽  
J. Samitier ◽  
M. C. Acero ◽  
J. A. Plaza ◽  
...  

The analysis of a thermo-pneumatic actuation unit for its use in a micropump has been carried out. Coupled thermo-mechanical simulations by finite element method (FEM) (with ANSYS software) were required because of the complexity of the device. The simulation results were validated by thermal and mechanical experimental results, showing a good agreement. FEM results have been used to extract a high level model of the actuation unit that can be used to estimate the maximum performance of the micropump operation with this actuation unit. In order to identify the best frequency of operation for the pump, a quality parameter has been defined based on the thermal dynamics of the actuation unit.


2011 ◽  
Vol 199-200 ◽  
pp. 1126-1129
Author(s):  
Su Fang Fu ◽  
Han Gao ◽  
Jia Xi Du ◽  
Qiu Ju Zhang ◽  
Xue Ming Zhang ◽  
...  

In this paper, the finite element model for the cabinet of a drum washing machine and the model for testing vibration of the cabinet were developed in ANSYS software and PULSE™, respectively. A series of tests were conducted. The natural frequencies and mode shapes were obtained by finite element analysis and modal experiment, which revealed weak parts of the cabinet. Meanwhile, the computational modes were in good agreement with experimental ones and this could provide an available method by which it was convenient to improve the design of the cabinet.


2014 ◽  
Vol 607 ◽  
pp. 405-408 ◽  
Author(s):  
Wen Liu ◽  
Teng Jiao Lin ◽  
Quan Cheng Peng

The gear-shaft-bearing-housing coupled finite element model of marine gearbox was established by using the truss element, the spring element and the tetrahedral element. The modal of gearbox was analyzed by using the ANSYS software. Then through the experimental modal analysis, the natural frequencies of gearbox are obtained. Compare the experimental results with the numerical results, it shows good agreement.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Sangjin Byun

This paper presents a closed-form equation of data dependent jitter (DDJ) in first order low pass systems. The DDJ relates to the system bandwidth, the bit rate, the input rise/fall time, and the number of maximum consecutive identical bits of the data pattern. To confirm the derived equation, simulations have been done with a first order RC low pass circuit for various system bandwidths, bit rates, input rise/fall times, and data patterns. The simulation results agree well with the calculated DDJ values by the derived equation.


2014 ◽  
Vol 644-650 ◽  
pp. 3881-3885
Author(s):  
Li Liu ◽  
Wei Wei Yu ◽  
Dong Wang Yang

In order to simulate the thermal influence on springback property of O-ring, based on elastic-plastic contact analysis method of finite element analysis (FEA), numerical simulation of compression-springback course of O-ring was carried out by ANSYS software. The results show that it causes a sharp decrease in the peak force applied on O-ring, corresponding to a decline on the contact stress distribution which may influence the seal ability of the O-ring. The simulation results are in good agreement with the experimental results.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
T. Elnady ◽  
M. Åbom ◽  
S. Allam

One of the main sources of noise of a vehicle is the engine where its noise is usually damped by means of acoustic mufflers. A very common problem in the modeling of automotive mufflers is that of two flow ducts coupled through a perforate. A new segmentation approach is developed here based on two-port analysis techniques, in order to model perforated pipes using general two-port codes, which are widely available. Examples are given for simple muffler configurations and the convergence of the technique is investigated based on the number of segments used. The results are compared with closed form solutions form the literature. Finally, an analysis of a complicated multichamber perforated muffler system is presented. The two-port simulation results show good agreement with both the measurements, and the simulations using the classical four-port elements.


Author(s):  
Денис Васильевич Пьянзин ◽  
Николай Александрович Панькин ◽  
Александр Николаевич Чалдышкин ◽  
Николай Иванович Чистяков

Проведено экспериментальное исследование и компьютерное моделирование в программном комплексе ANSYS термического воздействия на металлический материал. Отмечается уменьшение значений коэффициента теплового расширения при увеличении скорости нагрева образца. Показано, что данное поведение обусловлено наличием градиента температур между его центральной и поверхностью частями. Отмечается хорошее согласие результатов компьютерного моделирования с соответствующими экспериментальными данными. Значения коэффициента теплового расширения близки к истинным, которые были определены при малых скоростях нагрева/охлаждения или при длительной выдержке образца при конечной и начальной температурах. Результаты моделирования в ANSYS могут быть использованы при интерпретации и прогнозировании тепловых свойств металлических материалов. An experimental study and computer modeling in the ANSYS software package of the thermal effect on a metal material was carried out. A decrease in the values of the coefficient of the thermal expansion is noted with an increase in the heating rate of the sample. It is shown that this behavior is due to the presence of the temperature gradient between its central and surface parts. Good agreement of the results of computer simulation with the corresponding experimental data is found. The values of the coefficient of thermal expansion are close to true ones determined at low heating / cooling rates or with long exposure of the sample at the final and initial temperatures. The simulation results in ANSYS can be used to interpret and predict thermal properties of metallic materials.


1977 ◽  
Vol 5 (4) ◽  
pp. 202-225 ◽  
Author(s):  
G. R. Potts ◽  
C. A. Bell ◽  
L. T. Charek ◽  
T. K. Roy

Abstract Natural frequencies and vibrating motions are determined in terms of the material and geometric properties of a radial tire modeled as a thin ring on an elastic foundation. Experimental checks of resonant frequencies show good agreement. Forced vibration solutions obtained are shown to consist of a superposition of resonant vibrations, each rotating around the tire at a rate depending on the mode number and the tire rotational speed. Theoretical rolling speeds that are upper bounds at which standing waves occur are determined and checked experimentally. Digital Fourier transform, transfer function, and modal analysis techniques used to determine the resonant mode shapes of a radial tire reveal that antiresonances are the primary transmitters of vibration to the tire axle.


Sign in / Sign up

Export Citation Format

Share Document