scholarly journals Production cross–section and reaction yield calculations for 123-126I isotopes on 123Sb(α,xn) reactions

2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Hasan Özdoğan ◽  
◽  
Mert Şekerci ◽  
Abdullah Kaplan ◽  
◽  
...  

Most of the radioisotopes used in the medical fields, like examination and treatment studies, were produced by employing nuclear reactions. Within the process of a nuclear reaction, one of the most important parameters is the cross-section data, which help reveal the reaction phenomenon's mechanisms. The main intention of this study is to investigate the efficiencies of producing iodine isotopes via 123Sb(α,xn) reactions. For this, optical and level density models of TALYS 1.8 code have been used. Production cross-section, the alpha beam energy, reaction yields, and total activation of radioisotopes have been computed. It has been figured out that a 45 MeV cyclotron could be enough for producing 123-126I radioisotopes with reaction yields of 39.3372, 5.5685, 0.2410, and 0.0796 GBq/mAh, respectively.

2020 ◽  
Vol 35 (24) ◽  
pp. 2050202
Author(s):  
Mert Şekerci ◽  
Hasan Özdoğan ◽  
Abdullah Kaplan

Level density models have an undeniable importance for a better perception on the nature of nuclear reactions, which influences our life via various ways. Many novel and advanced medical application use radioisotopes, which are produced with nuclear reactions. By considering the connection between the level density models and the importance of theoretical calculations for the production routes of medically important isotopes, this study is performed to investigate the level density model effects on the production cross-section calculations of [Formula: see text]Zn, [Formula: see text]Ga, [Formula: see text]Kr, [Formula: see text]Pd, [Formula: see text]In, [Formula: see text]I and [Formula: see text]At radioisotopes via some alpha particle induced and neutron emitting reactions. For theoretical calculations; frequently used computation tools, such as TALYS and EMPIRE codes, are applied. Obtained theoretical results are then compared with the experimental data, taken from Experimental Nuclear Reaction Data (EXFOR) library. For a better interpretation of the results, a mean weighted deviation calculation for each investigated reaction is performed in addition to a visual comparison of the graphical representations of the outcomes.


2019 ◽  
Vol 108 (1) ◽  
pp. 11-17
Author(s):  
Mert Şekerci ◽  
Hasan Özdoğan ◽  
Abdullah Kaplan

Abstract One of the methods used to treat different cancer diseases is the employment of therapeutic radioisotopes. Therefore, many clinical, theoretical and experimental studies are being carried out on those radioisotopes. In this study, the effects of level density models and gamma ray strength functions on the theoretical production cross-section calculations for the therapeutic radioisotopes 90Y, 153Sm, 169Er, 177Lu and 186Re in the (n,γ) route have been investigated. TALYS 1.9 code has been used by employing different level density models and gamma ray strength functions. The theoretically obtained data were compared with the experimental data taken from the literature. The results are presented graphically for better interpretation.


2021 ◽  
Vol 36 (08) ◽  
pp. 2150051
Author(s):  
H. Özdoğan ◽  
İsmail Hakki Sarpün ◽  
Mert Şekerci ◽  
Abdullah Kaplan

[Formula: see text], a known gamma emitter, is used for many medical purposes such as imaging of myocardial metastases. It can be produced by using different nuclear reactions. In this study, the reactions of [Formula: see text]Ag([Formula: see text]2n)[Formula: see text], [Formula: see text](p,[Formula: see text]n)[Formula: see text], [Formula: see text](p,[Formula: see text]2n)[Formula: see text], [Formula: see text](p,[Formula: see text]3n)[Formula: see text] and [Formula: see text](p,[Formula: see text]4n)[Formula: see text], which are the production routes of [Formula: see text], were investigated. Production cross-section calculations were performed by using equilibrium and pre-equilibrium models of TALYS 1.95 and EMPIRE 3.2 nuclear reaction codes. Hauser–Feshbach Model was appointed in both codes for calculations of equilibrium approximations. Exciton and Hybrid Monte Carlo Simulation (HMS) models were used in the EMPIRE 3.2, whereas Two-Component Exciton and Geometry Dependent Hybrid Model, which is implemented to TALYS code, has been used in the TALYS 1.95 for pre-equilibrium reactions. Also, a weighting matrix of the nuclear models was obtained by using statistical variance analysis. The optimum beam energy to obtain [Formula: see text] has been determined by using the results obtained from this weighting matrix.


1992 ◽  
Vol 45 (3) ◽  
pp. 317 ◽  
Author(s):  
RA Bonham ◽  
MR Bruce

New results for the total neutral dissociation cross section and an estimate of the gross cross section for the production of neutral fluorine by electron impact on CF4 have been obtained by combining previously reported results for the total dissociation cross section and the counting cross section for the total dissociative ionisation. This advancement was made possible by recently reported results for multication formation obtained from coincidence experiments. The estimate of the neutral fluorine production cross section is of the same order of magnitude as the total dissociation cross section itself, a similarity which may explain why CF4 is such an effective etching gas. The available cross section data for electron impact energies between 5 and 200 e V are reviewed.


Kerntechnik ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. 411-418
Author(s):  
Y. Kavun ◽  
R. Makwana

Abstract Oxygen and magnesium isotopes can be used in nuclear reactor materials as cooling, shielding, coating, electronics etc. They can also occur through nuclear reactions during the reactor operation. The exposure of high energy gamma can change the material and its properties, and hence its objective of selection may not remain satisfied. Thus, it is required to study the cross section of different reactions on nuclear reactor materials to understand their sustainability for the properties, for which they are chosen. In the scope of this study, theoretically, different level density model calculations and γ-ray strength functions have been performed for (γ, p) reaction for 16,18O and 24,26Mg nuclei using TALYS 1.9 and EMPI˙RE 3.2.2 codes. Also, semi empirical (γ, p) formula by Tel et al., have been calculated and compared with all results. The effect of different level density models defined in these codes on gamma strength has been studied. Finally, the consistency of these obtained data with EXFOR data have been investigated.


2020 ◽  
Vol 27 ◽  
pp. 68
Author(s):  
Mert Sekerci ◽  
H. Özdoğan

The utilization of radioisotopes has been increasing proportionally with the scientific and industrial developments. Among many known and used examples of them, 62Cu has a wide usage due to its suitability for many specific requirements such as in medical applications. By considering the importance of radioisotopes and especially 62Cu, in this study, the theoretical calculations of cross–section values for 62Cu via 59Co(α,n)62Cu, 61Ni(d,n)62Cu, 62Ni(d,2n)62Cu and 62Ni(p,n)62Cu reactions were carried out by employing three phenomenological level density models via TALYS 1.9 code. Obtained results were compared with the available experimental data from Experimental Nuclear Reaction Data (EXFOR) Library by graphically and mathematically.


Sign in / Sign up

Export Citation Format

Share Document