scholarly journals Enhancement of Maternal ECG Using Short-Term Fourier Transform for Foetal Electrocardiogram Extraction

Author(s):  
Prof. M. Senthil Vadivu ◽  
Saranya H ◽  
Vijay Kumar K S

The objective of the project is to improve maternal abdomen recording for better prediction of foetal Electrocardiogram (FECG). One of the most difficult tasks in observing foetal well-being is obtaining a clean foetal Electrocardiogram (FECG) using non-invasive abdominal recordings. The foetal graph's low signal quality, on the other hand, makes morphological examination of its wave structure in clinical follow-up difficult. The signal contains precise information that can help doctors to monitor fetal health during pregnancy and labor. The abdominal signal is normalized and separated in the pre-processing stage for wave shape analysis in clinical follow-up. The Kaiser window is used for spectral analysis and segmenting the signal. The two-dimensional (2D) time-frequency representation is obtained by short-time Fourier transform (STFT). The STFT enhances the abdominal recordings of maternal Electrocardiogram (MECG) for efficient separation of foetal electrocardiogram (FECG) to monitor the foetus well-being.

2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


2021 ◽  
Author(s):  
Denchai Worasawate ◽  
Warisara Asawaponwiput ◽  
Natsue Yoshimura ◽  
Apichart Intarapanich ◽  
Decho Surangsrirat

BACKGROUND Parkinson’s disease (PD) is a long-term neurodegenerative disease of the central nervous system. The current diagnosis is dependent on clinical observation and the abilities and experience of a trained specialist. One of the symptoms that affect most patients over the course of their illness is voice impairment. OBJECTIVE Voice is one of the non-invasive data that can be collected remotely for diagnosis and disease progression monitoring. In this study, we analyzed voice recording data from a smartphone as a possible disease biomarker. The dataset is from one of the largest mobile PD studies, the mPower study. METHODS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. RESULTS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. CONCLUSIONS Classification accuracies of the proposed method with LeNet-5, ResNet-50, and VGGNet-16 are 97.7 ± 0.1%, 98.6 ± 0.2%, and 99.3 ± 0.1%, respectively. CLINICALTRIAL ClinicalTrials.gov NCT02696603; https://www.clinicaltrials.gov/ct2/show/NCT02696603


2018 ◽  
Vol 173 ◽  
pp. 03054
Author(s):  
Xueqin Zhang ◽  
Ruolun Liu

The Chirplet Transform (CT) is effective in the characterization of IF for mono-component linear-frequency-modulated signal. However, During the initialization process, using the peak of the time-frequency map of the short-time Fourier transform to fit the line is greatly affected by noise. For the multi-component signals, it is more difficult to distinguish and fit different IF lines. Since the Hough is good at a common algorithm for the line detection, the ridge edge fitting is replaced by the Hough transform in this paper. The experiment results show significant improvement in the obtained time-frequency representation.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Junbo Long ◽  
Haibin Wang ◽  
Daifeng Zha ◽  
Hongshe Fan ◽  
Zefeng Lao ◽  
...  

The short time Fourier transform time-frequency representation (STFT-TFR) method degenerates, and the corresponding short time Fourier transform time-frequency filtering (STFT-TFF) method fails underαstable distribution noise environment. A fractional low order short time Fourier transform (FLOSTFT) which takes advantage of fractionalporder moment is proposed forαstable distribution noise environment, and the corresponding FLOSTFT time-frequency representation (FLOSTFT-TFR) algorithm is presented in this paper. We study vector formulation of the FLOSTFT and inverse FLOSTFT (IFLOSTFT) methods and propose a FLOSTFT time-frequency filtering (FLOSTFT-TFF) method which takes advantage of time-frequency localized spectra of the signal in time-frequency domain. The simulation results show that, employing the FLOSTFT-TFR method and the FLOSTFT-TFF method with an adaptive weight function, time-frequency distribution of the signals can be better gotten and time-frequency localized region of the signal can be effectively extracted fromαstable distribution noise, and also the original signal can be restored employing the IFLOSTFT method. Their performances are better than the STFT-TFR and STFT-TFF methods, and MSEs are smaller in differentαand GSNR cases. Finally, we apply the FLOSTFT-TFR and FLOSTFT-TFF methods to extract fault features of the bearing outer race fault signal and restore the original fault signal fromαstable distribution noise; the experimental results illustrate their performances.


2020 ◽  
Vol 9 (1) ◽  
pp. 41-48
Author(s):  
Jans Hendry ◽  
Isnan Nur Rifai ◽  
Yoga Mileniandi

The Short-time Fourier transform (STFT) is a popular time-frequency representation in many source separation problems. In this work, the sampled and discretized version of Discrete Gabor Transform (DGT) is proposed to replace STFT within the single-channel source separation problem of the Non-negative Matrix Factorization (NMF) framework. The result shows that NMF-DGT is better than NMF-STFT according to Signal-to-Interference Ratio (SIR), Signal-to-Artifact Ratio (SAR), and Signal-to-Distortion Ratio (SDR). In the supervised scheme, NMF-DGT has a SIR of 18.60 dB compared to 16.24 dB in NMF-STFT, SAR of 13.77 dB to 13.69 dB, and SDR of 12.45 dB to 11.16 dB. In the unsupervised scheme, NMF-DGT has a SIR of 0.40 dB compared to 0.27 dB by NMF-STFT, SAR of -10.21 dB to -10.36 dB, and SDR of -15.01 dB to -15.23 dB.


2006 ◽  
Vol 129 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Bao Liu ◽  
Sherman Riemenschneider ◽  
Zuowei Shen

This paper presents a fast adaptive time–frequency analysis method for dealing with the signals consisting of stationary components and transients, which are encountered very often in practice. It is developed based on the short-time Fourier transform but the window bandwidth varies along frequency adaptively. The method therefore behaves more like an adaptive continuous wavelet transform. We use B-splines as the window functions, which have near optimal time–frequency localization, and derive a fast algorithm for adaptive time–frequency representation. The method is applied to the analysis of vibration signals collected from rotating machines with incipient localized defects. The results show that it performs obviously better than the short-time Fourier transform, continuous wavelet transform, and several other most studied time–frequency analysis techniques for the given task.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Azamatjon Kakhramon ugli Malikov ◽  
Younho Cho ◽  
Young H. Kim ◽  
Jeongnam Kim ◽  
Junpil Park ◽  
...  

Ultrasonic non-destructive analysis is a promising and effective method for the inspection of protective coating materials. Offshore coating exhibits a high attenuation rate of ultrasonic energy due to the absorption and ultrasonic pulse echo testing becomes difficult due to the small amplitude of the second echo from the back wall of the coating layer. In order to address these problems, an advanced ultrasonic signal analysis has been proposed. An ultrasonic delay line was applied due to the high attenuation of the coating layer. A short-time Fourier transform (STFT) of the waveform was implemented to measure the thickness and state of bonding of coating materials. The thickness of the coating material was estimated by the projection of the STFT into the time-domain. The bonding and debonding of the coating layers were distinguished using the ratio of the STFT magnitude peaks of the two subsequent wave echoes. In addition, the advantage of the STFT-based approach is that it can accurately and quickly estimate the time of flight (TOF) of a signal even at low signal-to-noise ratios. Finally, a convolutional neural network (CNN) was applied to automatically determine the bonding state of the coatings. The time–frequency representation of the waveform was used as the input to the CNN. The experimental results demonstrated that the proposed method automatically determines the bonding state of the coatings with high accuracy. The present approach is more efficient compared to the method of estimating bonding state using attenuation.


Sign in / Sign up

Export Citation Format

Share Document