scholarly journals A Survey: Deep Learning Methods on Diabetic Retinopathy

Author(s):  
Kamlesh Raghuwanshi ◽  
Vipin Tiwari

Diabetes Mellitus (DM) is a metabolic condition that arises because of the elevated level of blood sugar in the body which triggers eye deficiency, also known as Diabetic Retinopathy (DR) which causes severe vision loss. An effective and efficient tool for early DR diagnosis and assisting experts is a computer-aided diagnosis (CAD) device focused on retinal fundus images that can detect this problem. A CAD method requires different phases in fundus images, such as identification, segmentation and lesion classification. Recent advancement of deep learning (DL) and its definitive victory over conventional ML approaches inspired researchers for implementation of many deep-learning-based techniques using different phases of fundus images. This paper highlights these deep learning approaches along with their pros and cons.

Author(s):  
Mohammad Shorfuzzaman ◽  
M. Shamim Hossain ◽  
Abdulmotaleb El Saddik

Diabetic retinopathy (DR) is one of the most common causes of vision loss in people who have diabetes for a prolonged period. Convolutional neural networks (CNNs) have become increasingly popular for computer-aided DR diagnosis using retinal fundus images. While these CNNs are highly reliable, their lack of sufficient explainability prevents them from being widely used in medical practice. In this article, we propose a novel explainable deep learning ensemble model where weights from different models are fused into a single model to extract salient features from various retinal lesions found on fundus images. The extracted features are then fed to a custom classifier for the final diagnosis of DR severity level. The model is trained on an APTOS dataset containing retinal fundus images of various DR grades using a cyclical learning rates strategy with an automatic learning rate finder for decaying the learning rate to improve model accuracy. We develop an explainability approach by leveraging gradient-weighted class activation mapping and shapely adaptive explanations to highlight the areas of fundus images that are most indicative of different DR stages. This allows ophthalmologists to view our model's decision in a way that they can understand. Evaluation results using three different datasets (APTOS, MESSIDOR, IDRiD) show the effectiveness of our model, achieving superior classification rates with a high degree of precision (0.970), sensitivity (0.980), and AUC (0.978). We believe that the proposed model, which jointly offers state-of-the-art diagnosis performance and explainability, will address the black-box nature of deep CNN models in robust detection of DR grading.


Author(s):  
Jaskirat Kaur ◽  
Deepti Mittal

Diabetic retinopathy, a symptomless medical condition of diabetes, is one of the significant reasons of vision impairment all over the world. The prior detection and diagnosis can decrease the occurrence of acute vision loss and enhance efficiency of treatment. Fundus imaging, a non-invasive diagnostic technique, is the most frequently used mode for analyzing retinal abnormalities related to diabetic retinopathy. Computer-aided methods based on retinal fundus images support quick diagnosis, impart an additional perspective during decision-making, and behave as an efficient means to assess response of treatment on retinal abnormalities. However, in order to evaluate computer-aided systems, a benchmark database of clinical retinal fundus images is required. Therefore, a representative database comprising of 2942 clinical retinal fundus images is developed and presented in this work. This clinical database, having varying attributes such as position, dimensions, shapes, and color, is formed to evaluate the generalization capability of computer-aided systems for diabetic retinopathy diagnosis. A framework for the development of benchmark retinal fundus images database is also proposed. The developed database comprises of medical image annotations for each image from expert ophthalmologists corresponding to anatomical structures, retinal lesions and stage of diabetic retinopathy. In addition, the substantial performance comparison capability of the proposed database aids in analyzing candidature of different methods, and subsequently its usage in medical practice for real-time applications.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 274 ◽  
Author(s):  
Thippa Reddy Gadekallu ◽  
Neelu Khare ◽  
Sweta Bhattacharya ◽  
Saurabh Singh ◽  
Praveen Kumar Reddy Maddikunta ◽  
...  

Diabetic Retinopathy is a major cause of vision loss and blindness affecting millions of people across the globe. Although there are established screening methods - fluorescein angiography and optical coherence tomography for detection of the disease but in majority of the cases, the patients remain ignorant and fail to undertake such tests at an appropriate time. The early detection of the disease plays an extremely important role in preventing vision loss which is the consequence of diabetes mellitus remaining untreated among patients for a prolonged time period. Various machine learning and deep learning approaches have been implemented on diabetic retinopathy dataset for classification and prediction of the disease but majority of them have neglected the aspect of data pre-processing and dimensionality reduction, leading to biased results. The dataset used in the present study is a diabetes retinopathy dataset collected from the UCI machine learning repository. At its inceptions, the raw dataset is normalized using the Standardscalar technique and then Principal Component Analysis (PCA) is used to extract the most significant features in the dataset. Further, Firefly algorithm is implemented for dimensionality reduction. This reduced dataset is fed into a Deep Neural Network Model for classification. The results generated from the model is evaluated against the prevalent machine learning models and the results justify the superiority of the proposed model in terms of Accuracy, Precision, Recall, Sensitivity and Specificity.


2021 ◽  
Author(s):  
Nilarun Mukherjee ◽  
Souvik Sengupta

Abstract Background: Diabetic retinopathy (DR) is a complication of diabetes mellitus, which if left untreated may lead to complete vision loss. Early diagnosis and treatment is the key to prevent further complications of DR. Computer-aided diagnosis is a very effective method to support ophthalmologists, as manual inspection of pathological changes in retina images are time consuming and expensive. In recent times, Machine Learning and Deep Learning techniques have subsided conventional rule based approaches for detection, segmentation and classification of DR stages and lesions in fundus images. Method: In this paper, we present a comparative study of the different state-of-the-art preprocessing methods that have been used in deep learning based DR classification tasks in recent times and also propose a new unsupervised learning based retinal region extraction technique and new combinations of preprocessing pipelines designed on top of it. Efficacy of different existing and new combinations of the preprocessing methods are analyzed using two publicly available retinal datasets (EyePACS and APTOS) for different DR stage classification tasks, such as referable DR, DR screening, and five-class DR grading, using a benchmark deep learning model (ResNet-50). Results: It has been observed that the proposed preprocessing strategy composed of region of interest extraction through K-means clustering followed by contrast and edge enhancement using Graham’s method and z-score intensity normalization achieved the highest accuracy of 98.5%, 96.51% and 90.59% in DR-screening, referable-DR, and DR gradation tasks respectively and also achieved the best quadratic weighted kappa score of 0.945 in DR grading task. It achieved best AUC-ROC of 0.98 and 0.9981 in DR grading and DR screening tasks respectively. Conclusion: It is evident from the results that the proposed preprocessing pipeline composed of the proposed ROI extraction through K-means clustering, followed by edge and contrast enhancement using Graham’s method and then z-score intensity normalization outperforms all other existing preprocessing pipelines and has proven to be the most effective preprocessing strategy in helping the baseline CNN model to extract meaningful deep features.


Mekatronika ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 68-72
Author(s):  
Abdulaziz Abdo Salman ◽  
Ismail Mohd Khairuddin ◽  
Anwar P.P. Abdul Majeed ◽  
Mohd Azraai Mohd Razman

Diabetes is a global disease that occurs when the body is disabled pancreas to secrete insulin to convert the sugar to power in the blood. As a result, some tiny blood vessels on the part of the body, such as the eyes, are affected by high sugar and cause blocking blood flow in the vessels, which is called diabetic retinopathy.  This disease may lead to permanent blindness due to the growth of new vessels in the back of the retina causing it to detach from the eyes. In 2016, 387 million people were diagnosed with Diabetic retinopathy, and the number is growing yearly, and the old detection approach becomes worse. Therefore, the purpose of this paper is to computerize the old method of detecting different classes of DR from 0-4 according to severity by given fundus images. The method is to construct a fine-tuned deep learning model based on transfer learning with dense layers. The used models here are InceptionV3, VGG16, and ResNet50 with a sharpening filter. Subsequently, InceptionV3 has achieved 94% as the highest accuracy among other models.  


2021 ◽  
Vol 11 (24) ◽  
pp. 11970
Author(s):  
Angel Ayala ◽  
Tomás Ortiz Figueroa ◽  
Bruno Fernandes ◽  
Francisco Cruz

Diabetes is a disease that occurs when the body presents an uncontrolled level of glucose that is capable of damaging the retina, leading to permanent damage of the eyes or vision loss. When diabetes affects the eyes, it is known as diabetic retinopathy, which became a global medical problem among elderly people. The fundus oculi technique involves observing the eyeball to diagnose or check the pathology evolution. In this work, we implement a convolutional neural network model to process a fundus oculi image to recognize the eyeball structure and determine the presence of diabetic retinopathy. The model’s parameters are optimized using the transfer-learning methodology for mapping an image with the corresponding label. The model training and testing are performed with a dataset of medical fundus oculi images and a pathology severity scale present in the eyeball as labels. The severity scale separates the images into five classes, from a healthy eyeball to a proliferative diabetic retinopathy presence. The latter is probably a blind patient. Our proposal presented an accuracy of 97.78%, allowing for the confident prediction of diabetic retinopathy in fundus oculi images.


2020 ◽  
Vol 14 ◽  
Author(s):  
Charu Bhardwaj ◽  
Shruti Jain ◽  
Meenakshi Sood

: Diabetic Retinopathy is the leading cause of vision impairment and its early stage diagnosis relies on regular monitoring and timely treatment for anomalies exhibiting subtle distinction among different severity grades. The existing Diabetic Retinopathy (DR) detection approaches are subjective, laborious and time consuming which can only be carried out by skilled professionals. All the patents related to DR detection and diagnoses applicable for our research problem were revised by the authors. The major limitation in classification of severities lies in poor discrimination between actual lesions, background noise and other anatomical structures. A robust and computationally efficient Two-Tier DR (2TDR) grading system is proposed in this paper to categorize various DR severities (mild, moderate and severe) present in retinal fundus images. In the proposed 2TDR grading system, input fundus image is subjected to background segmentation and the foreground fundus image is used for anomaly identification followed by GLCM feature extraction forming an image feature set. The novelty of our model lies in the exhaustive statistical analysis of extracted feature set to obtain optimal reduced image feature set employed further for classification. Classification outcomes are obtained for both extracted as well as reduced feature set to validate the significance of statistical analysis in severity classification and grading. For single tier classification stage, the proposed system achieves an overall accuracy of 100% by k- Nearest Neighbour (kNN) and Artificial Neural Network (ANN) classifier. In second tier classification stage an overall accuracy of 95.3% with kNN and 98.0% with ANN is achieved for all stages utilizing optimal reduced feature set. 2TDR system demonstrates overall improvement in classification performance by 2% and 6% for kNN and ANN respectively after feature set reduction, and also outperforms the accuracy obtained by other state of the art methods when applied to the MESSIDOR dataset. This application oriented work aids in accurate DR classification for effective diagnosis and timely treatment of severe retinal ailment.


Sign in / Sign up

Export Citation Format

Share Document