The Diagnosis Of Diabetic Retinopathy By Means Of Transfer Learning And Fine-Tuned Dense Layer Pipeline

Mekatronika ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 68-72
Author(s):  
Abdulaziz Abdo Salman ◽  
Ismail Mohd Khairuddin ◽  
Anwar P.P. Abdul Majeed ◽  
Mohd Azraai Mohd Razman

Diabetes is a global disease that occurs when the body is disabled pancreas to secrete insulin to convert the sugar to power in the blood. As a result, some tiny blood vessels on the part of the body, such as the eyes, are affected by high sugar and cause blocking blood flow in the vessels, which is called diabetic retinopathy.  This disease may lead to permanent blindness due to the growth of new vessels in the back of the retina causing it to detach from the eyes. In 2016, 387 million people were diagnosed with Diabetic retinopathy, and the number is growing yearly, and the old detection approach becomes worse. Therefore, the purpose of this paper is to computerize the old method of detecting different classes of DR from 0-4 according to severity by given fundus images. The method is to construct a fine-tuned deep learning model based on transfer learning with dense layers. The used models here are InceptionV3, VGG16, and ResNet50 with a sharpening filter. Subsequently, InceptionV3 has achieved 94% as the highest accuracy among other models.  

2020 ◽  
Vol 10 (6) ◽  
pp. 2021 ◽  
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli

Diabetic retinopathy (DR) is a dangerous eye condition that affects diabetic patients. Without early detection, it can affect the retina and may eventually cause permanent blindness. The early diagnosis of DR is crucial for its treatment. However, the diagnosis of DR is a very difficult process that requires an experienced ophthalmologist. A breakthrough in the field of artificial intelligence called deep learning can help in giving the ophthalmologist a second opinion regarding the classification of the DR by using an autonomous classifier. To accurately train a deep learning model to classify DR, an enormous number of images is required, and this is an important limitation in the DR domain. Transfer learning is a technique that can help in overcoming the scarcity of images. The main idea that is exploited by transfer learning is that a deep learning architecture, previously trained on non-medical images, can be fine-tuned to suit the DR dataset. This paper reviews research papers that focus on DR classification by using transfer learning to present the best existing methods to address this problem. This review can help future researchers to find out existing transfer learning methods to address the DR classification task and to show their differences in terms of performance.


Author(s):  
Alfiya Md. Shaikh

Abstract: Diabetic retinopathy (DR) is a medical condition that damages eye retinal tissues. Diabetic retinopathy leads to mild to complete blindness. It has been a leading cause of global blindness. The identification and categorization of DR take place through the segmentation of parts of the fundus image or the examination of the fundus image for the incidence of exudates, lesions, microaneurysms, and so on. This research aims to study and summarize various recent proposed techniques applied to automate the process of classification of diabetic retinopathy. In the current study, the researchers focused on the concept of classifying the DR fundus images based on their severity level. Emphasis is on studying papers that proposed models developed using transfer learning. Thus, it becomes vital to develop an automatic diagnosis system to support physicians in their work.


Author(s):  
Sehrish Qummar ◽  
Fiaz Gul Khan ◽  
Sajid Shah ◽  
Ahmad Khan ◽  
Ahmad Din ◽  
...  

Diabetes occurs due to the excess of glucose in the blood that may affect many organs of the body. The increase in blood sugar in the body causes many problems. One of the most prominent of these problems is Diabetic Retinopathy (DR). DR occurs due to the mutilation of the blood vessels in a retina. The detection of DR is complicated and time-consuming due to its features for the ophthalmologists. Therefore, automatic detection is required, recently different machine and deep learning techniques are being applied to detect and classify DR. In this paper, we conducted a study of the various techniques available in the literature for the identification/classification of DR, the datasets used, strengths and weaknesses of each method and provides the future directions. Moreover, we also discussed the different steps for the detection that are segmentation of blood vessels in a retina, detecting lesions and other abnormalities of DR in binary and multiclass classification.


2021 ◽  
Author(s):  
melissa de la pava ◽  
Hernan Rios ◽  
Francisco J. Rodríguez ◽  
Oscar J. Perdomo ◽  
Fabio A. González

Author(s):  
Kamlesh Raghuwanshi ◽  
Vipin Tiwari

Diabetes Mellitus (DM) is a metabolic condition that arises because of the elevated level of blood sugar in the body which triggers eye deficiency, also known as Diabetic Retinopathy (DR) which causes severe vision loss. An effective and efficient tool for early DR diagnosis and assisting experts is a computer-aided diagnosis (CAD) device focused on retinal fundus images that can detect this problem. A CAD method requires different phases in fundus images, such as identification, segmentation and lesion classification. Recent advancement of deep learning (DL) and its definitive victory over conventional ML approaches inspired researchers for implementation of many deep-learning-based techniques using different phases of fundus images. This paper highlights these deep learning approaches along with their pros and cons.


2018 ◽  
Vol 6 (9) ◽  
Author(s):  
DR.MATHEW GEORGE ◽  
DR.LINCY JOSEPH ◽  
MRS.DEEPTHI MATHEW ◽  
ALISHA MARIA SHAJI ◽  
BIJI JOSEPH ◽  
...  

Blood pressure is the force of blood pushing against blood vessel walls as the heart pumps out blood, and high blood pressure, also called hypertension, is an increase in the amount of force that blood places on blood vessels as it moves through the body. Factors that can increase this force include higher blood volume due to extra fluid in the blood and blood vessels that are narrow, stiff, or clogged(1). High blood pressure can damage blood vessels in the kidneys, reducing their ability to work properly. When the force of blood flow is high, blood vessels stretch so blood flows more easily. Eventually, this stretching scars and weakens blood vessels throughout the body, including those in the kidneys.


Author(s):  
Nikos Tsiknakis ◽  
Dimitris Theodoropoulos ◽  
Georgios Manikis ◽  
Emmanouil Ktistakis ◽  
Ourania Boutsora ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 290
Author(s):  
Luca Pasquini ◽  
Antonio Napolitano ◽  
Emanuela Tagliente ◽  
Francesco Dellepiane ◽  
Martina Lucignani ◽  
...  

Isocitrate dehydrogenase (IDH) mutant and wildtype glioblastoma multiforme (GBM) often show overlapping features on magnetic resonance imaging (MRI), representing a diagnostic challenge. Deep learning showed promising results for IDH identification in mixed low/high grade glioma populations; however, a GBM-specific model is still lacking in the literature. Our aim was to develop a GBM-tailored deep-learning model for IDH prediction by applying convoluted neural networks (CNN) on multiparametric MRI. We selected 100 adult patients with pathologically demonstrated WHO grade IV gliomas and IDH testing. MRI sequences included: MPRAGE, T1, T2, FLAIR, rCBV and ADC. The model consisted of a 4-block 2D CNN, applied to each MRI sequence. Probability of IDH mutation was obtained from the last dense layer of a softmax activation function. Model performance was evaluated in the test cohort considering categorical cross-entropy loss (CCEL) and accuracy. Calculated performance was: rCBV (accuracy 83%, CCEL 0.64), T1 (accuracy 77%, CCEL 1.4), FLAIR (accuracy 77%, CCEL 1.98), T2 (accuracy 67%, CCEL 2.41), MPRAGE (accuracy 66%, CCEL 2.55). Lower performance was achieved on ADC maps. We present a GBM-specific deep-learning model for IDH mutation prediction, with a maximal accuracy of 83% on rCBV maps. Highest predictivity achieved on perfusion images possibly reflects the known link between IDH and neoangiogenesis through the hypoxia inducible factor.


2021 ◽  
Vol 10 (3) ◽  
pp. 137
Author(s):  
Youngok Kang ◽  
Nahye Cho ◽  
Jiyoung Yoon ◽  
Soyeon Park ◽  
Jiyeon Kim

Recently, as computer vision and image processing technologies have rapidly advanced in the artificial intelligence (AI) field, deep learning technologies have been applied in the field of urban and regional study through transfer learning. In the tourism field, studies are emerging to analyze the tourists’ urban image by identifying the visual content of photos. However, previous studies have limitations in properly reflecting unique landscape, cultural characteristics, and traditional elements of the region that are prominent in tourism. With the purpose of going beyond these limitations of previous studies, we crawled 168,216 Flickr photos, created 75 scenes and 13 categories as a tourist’ photo classification by analyzing the characteristics of photos posted by tourists and developed a deep learning model by continuously re-training the Inception-v3 model. The final model shows high accuracy of 85.77% for the Top 1 and 95.69% for the Top 5. The final model was applied to the entire dataset to analyze the regions of attraction and the tourists’ urban image in Seoul. We found that tourists feel attracted to Seoul where the modern features such as skyscrapers and uniquely designed architectures and traditional features such as palaces and cultural elements are mixed together in the city. This work demonstrates a tourist photo classification suitable for local characteristics and the process of re-training a deep learning model to effectively classify a large volume of tourists’ photos.


Sign in / Sign up

Export Citation Format

Share Document