scholarly journals Diabetic Retinopathy Improved Detection Using Deep Learning

2021 ◽  
Vol 11 (24) ◽  
pp. 11970
Author(s):  
Angel Ayala ◽  
Tomás Ortiz Figueroa ◽  
Bruno Fernandes ◽  
Francisco Cruz

Diabetes is a disease that occurs when the body presents an uncontrolled level of glucose that is capable of damaging the retina, leading to permanent damage of the eyes or vision loss. When diabetes affects the eyes, it is known as diabetic retinopathy, which became a global medical problem among elderly people. The fundus oculi technique involves observing the eyeball to diagnose or check the pathology evolution. In this work, we implement a convolutional neural network model to process a fundus oculi image to recognize the eyeball structure and determine the presence of diabetic retinopathy. The model’s parameters are optimized using the transfer-learning methodology for mapping an image with the corresponding label. The model training and testing are performed with a dataset of medical fundus oculi images and a pathology severity scale present in the eyeball as labels. The severity scale separates the images into five classes, from a healthy eyeball to a proliferative diabetic retinopathy presence. The latter is probably a blind patient. Our proposal presented an accuracy of 97.78%, allowing for the confident prediction of diabetic retinopathy in fundus oculi images.

Author(s):  
Kamlesh Raghuwanshi ◽  
Vipin Tiwari

Diabetes Mellitus (DM) is a metabolic condition that arises because of the elevated level of blood sugar in the body which triggers eye deficiency, also known as Diabetic Retinopathy (DR) which causes severe vision loss. An effective and efficient tool for early DR diagnosis and assisting experts is a computer-aided diagnosis (CAD) device focused on retinal fundus images that can detect this problem. A CAD method requires different phases in fundus images, such as identification, segmentation and lesion classification. Recent advancement of deep learning (DL) and its definitive victory over conventional ML approaches inspired researchers for implementation of many deep-learning-based techniques using different phases of fundus images. This paper highlights these deep learning approaches along with their pros and cons.


Author(s):  
Mohammad Shorfuzzaman ◽  
M. Shamim Hossain ◽  
Abdulmotaleb El Saddik

Diabetic retinopathy (DR) is one of the most common causes of vision loss in people who have diabetes for a prolonged period. Convolutional neural networks (CNNs) have become increasingly popular for computer-aided DR diagnosis using retinal fundus images. While these CNNs are highly reliable, their lack of sufficient explainability prevents them from being widely used in medical practice. In this article, we propose a novel explainable deep learning ensemble model where weights from different models are fused into a single model to extract salient features from various retinal lesions found on fundus images. The extracted features are then fed to a custom classifier for the final diagnosis of DR severity level. The model is trained on an APTOS dataset containing retinal fundus images of various DR grades using a cyclical learning rates strategy with an automatic learning rate finder for decaying the learning rate to improve model accuracy. We develop an explainability approach by leveraging gradient-weighted class activation mapping and shapely adaptive explanations to highlight the areas of fundus images that are most indicative of different DR stages. This allows ophthalmologists to view our model's decision in a way that they can understand. Evaluation results using three different datasets (APTOS, MESSIDOR, IDRiD) show the effectiveness of our model, achieving superior classification rates with a high degree of precision (0.970), sensitivity (0.980), and AUC (0.978). We believe that the proposed model, which jointly offers state-of-the-art diagnosis performance and explainability, will address the black-box nature of deep CNN models in robust detection of DR grading.


When pancreas fails to secrete sufficient insulin in the human body, the glucose level in blood either becomes too high or too low. This fluctuation in glucose level affects different body organs such as kidney, brain, and eye. When the complications start appearing in the eyes due to Diabetic Mellitus (DM), it is called Diabetic Retinopathy (DR). DR can be categorized in several classes based on the severity, it can be Microaneurysms (ME), Haemorrhages (HE), Hard and Soft Exudates (EX and SE). DR is a slow start process that starts with very mild symptoms, becomes moderate with the time and results in complete vision loss, if not detected on time. Early-stage detection may greatly bolster in vision loss. However, it is impassable to detect the symptoms of DR with naked eyes. Ophthalmologist harbor to the several approaches and algorithm which makes use of different Machine Learning (ML) methods and classifiers to overcome this disease. The burgeoning insistence of Convolutional Neural Network (CNN) and their advancement in extracting features from different fundus images captivate several researchers to strive on it. Transfer Learning (TL) techniques help to use pre-trained CNN on a dataset that has finite training data, especially that in under developing countries. In this work, we propose several CNN architecture along with distinct classifiers which segregate the different lesions (ME and EX) in DR images with very eye-catching accuracies.


Author(s):  
Nirmal Yadav

Applying machine learning in life sciences, especially diagnostics, has become a key area of focus for researchers. Combining machine learning with traditional algorithms provides a unique opportunity of providing better solutions for the patients. In this paper, we present study results of applying the Ridgelet Transform method on retina images to enhance the blood vessels, then using machine learning algorithms to identify cases of Diabetic Retinopathy (DR). The Ridgelet transform provides better results for line singularity of image function and, thus, helps to reduce artefacts along the edges of the image. The Ridgelet Transform method, when compared with earlier known methods of image enhancement, such as Wavelet Transform and Contourlet Transform, provided satisfactory results. The transformed image using the Ridgelet Transform method with pre-processing quantifies the amount of information in the dataset. It efficiently enhances the generation of features vectors in the convolution neural network (CNN). In this study, a sample of fundus photographs was processed, which was obtained from a publicly available dataset. In pre-processing, first, CLAHE was applied, followed by filtering and application of Ridgelet transform on the patches to improve the quality of the image. Then, this processed image was used for statistical feature detection and classified by deep learning method to detect DR images from the dataset. The successful classification ratio was 98.61%. This result concludes that the transformed image of fundus using the Ridgelet Transform enables better detection by leveraging a transform-based algorithm and the deep learning.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 274 ◽  
Author(s):  
Thippa Reddy Gadekallu ◽  
Neelu Khare ◽  
Sweta Bhattacharya ◽  
Saurabh Singh ◽  
Praveen Kumar Reddy Maddikunta ◽  
...  

Diabetic Retinopathy is a major cause of vision loss and blindness affecting millions of people across the globe. Although there are established screening methods - fluorescein angiography and optical coherence tomography for detection of the disease but in majority of the cases, the patients remain ignorant and fail to undertake such tests at an appropriate time. The early detection of the disease plays an extremely important role in preventing vision loss which is the consequence of diabetes mellitus remaining untreated among patients for a prolonged time period. Various machine learning and deep learning approaches have been implemented on diabetic retinopathy dataset for classification and prediction of the disease but majority of them have neglected the aspect of data pre-processing and dimensionality reduction, leading to biased results. The dataset used in the present study is a diabetes retinopathy dataset collected from the UCI machine learning repository. At its inceptions, the raw dataset is normalized using the Standardscalar technique and then Principal Component Analysis (PCA) is used to extract the most significant features in the dataset. Further, Firefly algorithm is implemented for dimensionality reduction. This reduced dataset is fed into a Deep Neural Network Model for classification. The results generated from the model is evaluated against the prevalent machine learning models and the results justify the superiority of the proposed model in terms of Accuracy, Precision, Recall, Sensitivity and Specificity.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Silky Goel ◽  
Siddharth Gupta ◽  
Avnish Panwar ◽  
Sunil Kumar ◽  
Madhushi Verma ◽  
...  

Diabetes is a very fast-growing disease in India, with currently more than 72 million patients. Prolonged diabetes (about almost 20 years) can cause serious loss to the tiny blood vessels and neurons in the patient eyes, called diabetic retinopathy (DR). This first causes occlusion and then rapid vision loss. The symptoms of the disease are not very conspicuous in its early stage. The disease is featured by the formation of bloated structures in the retinal area called microaneurysms. Because of negligence, the condition of the eye worsens into the generation of more severe blots and damage to retinal vessels causing complete loss of vision. Early screening and monitoring of DR can reduce the risk of vision loss in patients with high possibilities. But the diabetic retinopathy detection and its classification by a human, is a challenging and error-prone task, because of the complexity of the image captured by color fundus photography. Machine learning algorithms armed with some feature extraction techniques have been employed earlier to detect and classify the levels of DR. However, these techniques provide below-par accuracy. Now, with the advent of deep learning (DL) techniques in computer vision, it has become possible to achieve very high levels of accuracy. DL models are an abstraction of the human brain coupled with the eyes. To create a model from scratch and train it is a cumbersome task requiring a huge amount of images. This deficiency of the DL techniques can be patched up by employing another technique to a task called transfer learning. In this, a DL model is trained on image metadata, and to learn features it used hundreds of classes from the DR fundus images. This enables professionals to create models capable of classifying unseen images into a proper grade or level with acceptable accuracy. This paper proposed a DL model coupled with different classifiers to classify the fundus image into its correct class of severity. We have trained the model on IDRD images and it has proven to show very high accuracy.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 542
Author(s):  
Muhammad Mateen ◽  
Tauqeer Safdar Malik ◽  
Shaukat Hayat ◽  
Musab Hameed ◽  
Song Sun ◽  
...  

In diabetic retinopathy (DR), the early signs that may lead the eyesight towards complete vision loss are considered as microaneurysms (MAs). The shape of these MAs is almost circular, and they have a darkish color and are tiny in size, which means they may be missed by manual analysis of ophthalmologists. In this case, accurate early detection of microaneurysms is helpful to cure DR before non-reversible blindness. In the proposed method, early detection of MAs is performed using a hybrid feature embedding approach of pre-trained CNN models, named as VGG-19 and Inception-v3. The performance of the proposed approach was evaluated using publicly available datasets, namely “E-Ophtha” and “DIARETDB1”, and achieved 96% and 94% classification accuracy, respectively. Furthermore, the developed approach outperformed the state-of-the-art approaches in terms of sensitivity and specificity for microaneurysms detection.


10.29007/h46n ◽  
2022 ◽  
Author(s):  
Hoang Nhut Huynh ◽  
Minh Thanh Do ◽  
Gia Thinh Huynh ◽  
Anh Tu Tran ◽  
Trung Nghia Tran

Diabetic retinopathy (DR) is a complication of diabetes mellitus that causes retinal damage that can lead to vision loss if not detected and treated promptly. The common diagnosis stages of the disease take time, effort, and cost and can be misdiagnosed. In the recent period with the explosion of artificial intelligence, deep learning has become the most popular tool with high performance in many fields, especially in the analysis and classification of medical images. The Convolutional Neural Network (CNN) is more widely used as a deep learning method in medical imaging analysis with highly effective. In this paper, the five-stage image of modern DR (healthy, mild, moderate, severe, and proliferative) can be detected and classified using the deep learning technique. After cross-validation training and testing on the corresponding 5,590-image dataset, a pre-MobileNetV2 training model is proposed in classifying stages of diabetic retinopathy. The average accuracy of the model achieved was 93.89% with the precision of 94.00%, recall 92.00% and f1-score 90.00%. The corresponding thermal image is also given to help experts for evaluating the influence of the retina in each different stage.


One of the most deadly diseases in the world is Heart Disease. The dysfunctionality of the heart at the early stage can be detected using iridology. The study of iridology describes the structure of the human iris as an observation of the condition of organs in the body. In this article, we explore the heart condition through a series of stages such as iris localization, segmentation, extraction of region of interest, histogram equalization and classification using convolutional neural network. The results are evaluated using various quality metrics such as precision, recall, f-score & accuracy.


Sign in / Sign up

Export Citation Format

Share Document