scholarly journals POTENTIAL OF CORONA SATELLITE IMAGERY FOR 3D RECONSTRUCTION OF ARCHAEOLOGICAL LANDSCAPES

Author(s):  
Jorge Angás ◽  
Paula Uribe ◽  
Manuel Bea ◽  
Mercedes Farjas ◽  
Enrique Ariño ◽  
...  

This paper presents a preliminary use of satellite imagery from the CORONA program in the reconstruction of thearchaeological landscape of two different sites: Ancient Termez (southern border of Uzbekistan) and Khatm Al Melaha(eastern coast of United Arab Emirates in Kalba area). This analysis constitutes the first step of the work carried out in thefield since 2018 at both sites for an analysis of the syntactic interoperability of multi-scale geospatial data for archaeologicalheritage. The aim of this work was to establish an approach for the use of CORONA satellite imagery for archaeologicalDEM reconstruction. The objectives of the reconstruction were conditioned for different reasons: in the case of Termezprior to the anthropic transformation of the site in the Soviet - Afghan War and in the case of Khatm Al Melaha prior to theurban, coastal and road transformation. The results have provided uneven data due to the characteristics of the existingimagery: mission, resolution, overlap, orography and different ground control point distribution. This methodology opens adoor to the reconstruction of archaeological landscapes that have suffered evident deterioration for different reasons bymeans of historical aerial imagery in the last 60 years, practically, in some cases, as a primary and unique source foranalysing this type of change from the past.

2021 ◽  
Vol 13 (11) ◽  
pp. 2233
Author(s):  
Rasa Janušaitė ◽  
Laurynas Jukna ◽  
Darius Jarmalavičius ◽  
Donatas Pupienis ◽  
Gintautas Žilinskas

Satellite remote sensing is a valuable tool for coastal management, enabling the possibility to repeatedly observe nearshore sandbars. However, a lack of methodological approaches for sandbar detection prevents the wider use of satellite data in sandbar studies. In this paper, a novel fully automated approach to extract nearshore sandbars in high–medium-resolution satellite imagery using a GIS-based algorithm is proposed. The method is composed of a multi-step workflow providing a wide range of data with morphological nearshore characteristics, which include nearshore local relief, extracted sandbars, their crests and shoreline. The proposed processing chain involves a combination of spectral indices, ISODATA unsupervised classification, multi-scale Relative Bathymetric Position Index (RBPI), criteria-based selection operations, spatial statistics and filtering. The algorithm has been tested with 145 dates of PlanetScope and RapidEye imagery using a case study of the complex multiple sandbar system on the Curonian Spit coast, Baltic Sea. The comparison of results against 4 years of in situ bathymetric surveys shows a strong agreement between measured and derived sandbar crest positions (R2 = 0.999 and 0.997) with an average RMSE of 5.8 and 7 m for PlanetScope and RapidEye sensors, respectively. The accuracy of the proposed approach implies its feasibility to study inter-annual and seasonal sandbar behaviour and short-term changes related to high-impact events. Algorithm-provided outputs enable the possibility to evaluate a range of sandbar characteristics such as distance from shoreline, length, width, count or shape at a relevant spatiotemporal scale. The design of the method determines its compatibility with most sandbar morphologies and suitability to other sandy nearshores. Tests of the described technique with Sentinel-2 MSI and Landsat-8 OLI data show that it can be applied to publicly available medium resolution satellite imagery of other sensors.


Author(s):  
Aly Elgayar ◽  
Salwa Mamoun Beheiry ◽  
Alaa Jabbar ◽  
Hamad Al Ansari

Purpose Over the past decade, the United Arab Emirates (UAE) introduced several green regulatory guidelines, federal decrees, and a considerable number of environmentally friendly initiatives. Hence, the purpose of this paper is to investigate the top green materials and systems used currently in the UAE construction industry as per the new laws dictate as well as see if professionals are switching over to incorporate more green materials, systems, and/or designs. Design/methodology/approach The work involved reviewing internationally popular green materials and systems for construction, developing a questionnaire based on the literature review, surveying professionals in the seven UAE emirates, and ranking the findings based on the relative importance index. Findings Findings found the top used green materials and system in the UAE’s construction industry. As well as identified that there is a communication gap between the design and implementation phases that is possibly hindering the use of more green materials and systems. Originality/value This study sets a baseline to measure the UAE’s progress over the coming years in terms of integrating more green construction materials, systems, methodologies, and trends.


Author(s):  
David J. A. Evans

To reconstruct the former extent and dynamics of ice sheets and glaciers requires a knowledge of process-form relationships that goes beyond individual landform types. Instead, glacial geomorphologists need to analyse large areas of glaciated terrain in a more holistic way, combining the whole range of glacial landforms and sediments to reconstruct glacier systems of the past, a subject now known as palaeoglaciology. ‘Glaciers of the past’ explains how the combination of aerial imagery and landform analysis is used in palaeoglaciological reconstruction. Increasingly powerful computers are making it possible to compile sophisticated numerical models that use our knowledge of glaciological processes and ice-core-derived palaeoclimate data to create three-dimensional glacier and ice sheet reconstructions.


2020 ◽  
Vol 57 (11) ◽  
pp. 1337-1348 ◽  
Author(s):  
Will Kochtitzky ◽  
Luke Copland ◽  
Moya Painter ◽  
Christine Dow

Recent surges of Dań Zhùr (Donjek) Glacier have formed lakes at the glacier terminus that have drained catastrophically, resulting in hazards to people and infrastructure downstream. Here we use air photos and satellite imagery to describe lake formation, and the timing of filling and draining, since the 1930s. Between the 1930s and late 1980s, lakes were typically small (<0.6 km2), took many years to form after a surge event, and drained slowly as they were displaced by the glacier advancing in the next surge. However, since 1993, the lakes have become larger (>1 km2) and drain rapidly through or under the glacier by breaking a terminal ice dam. For the past two surges, since 2001, the lakes formed during or immediately after a surge in an increasingly larger basin between the Neoglacial maximum moraine and an increasingly smaller maximum terminus extent. Most recently, the 2012–2014 surge created a lake that drained in summer 2017, refilled, and drained again in both summer 2018 and summer 2019. The 2019 lake was 2.2 km2, the largest on record, and drained entirely within 2 days. While a lake is unlikely to form again before the next expected surge in the mid-2020s, future surges of Dań Zhùr Glacier are still likely to create terminal lakes, necessitating continued monitoring for surge activity and lake formation.


This chapter examines the multi-scale nature of biological materials. It is shown that this characteristic motivated several design attempts within the field of tribological surfaces. These designs were not easy to implement because of a lack of technological means. Until the push for nanoscale material manipulation, many designs, although conceived and conceptually verified, were not technologically possible. The leap in technologies that matured within the past decade resurrected efforts to manufacture many discarded designs on a commercial scale. The material within this chapter presents samples of existing bio-inspired tribological surfaces. The examples are either a direct replica of the bio-analogue or represent a modification of the surface through a combination of chemical and geometrical changes.


2015 ◽  
Vol 6 (2) ◽  
pp. 51-64 ◽  
Author(s):  
Julia Gremm ◽  
Julia Barth ◽  
Wolfgang G. Stock

Many cities in the world define themselves as ‘smart.' Is this term appropriate for cities in the emergent Gulf region? This article investigates seven Gulf cities (Kuwait City, Manama, Doha, Abu Dhabi, Dubai, Sharjah, and Muscat) that have once grown rich due to large reserves of oil and gas. Now, with the threat of ending resources, governments focus on the development towards a knowledge society. The authors analyzed the cities in terms of their ‘smartness' or ‘informativeness' by a quantitative survey and by in-depth qualitative interviews (N = 34). Especially Doha in Qatar is well on its way towards an informational city, but also Dubai and Sharjah (both in the United Arab Emirates) make good scores.


Sign in / Sign up

Export Citation Format

Share Document