scholarly journals Break up length on Urea Water Solution jet in hot cross flow

Author(s):  
Anand T.N.C ◽  
Senthilkumar P ◽  
Shamit Bakshi

Selective Catalytic Reduction (SCR) using Urea-Water Solution (UWS) as an ammonia precursor is consideredas one of the best choices to meet the current stringent emission norms for reduction of NOX in diesel engines. UWS sprayed in the engine exhaust line forms ammonia, and this ammonia reduces NOX into nitrogen. The NOX reduction efficiency depends on the mixing and evaporation behavior of the UWS spray in the hot exhaust gas. Spray characteristics decide the evaporation rate and hence the NOX reduction efficiency. The spray structure is closely related to the breakup point and breakup mode of the jet. Hence, in this study, breakup length and breakup mode were investigated by injecting UWS (32.5 % by weight) through a nozzle in a hot air cross flow. A CCD camera and pulsed Nd:Yag laser were used for capturing the images. Experiments were conducted with varying nozzle size (150, 250 and 400 micron), injection pressure (0.5 to 3 bar), temperature (32 °C,150 °C and 200 °C) and air flow rate. The effect of operating parameters (nozzle size, injection pressure, air temperature and velocity) in terms of dimensionless numbers (Weber number and momentum flux ratio) on jet breakup mode and jet breakup length was studied. It was observed that the breakup length for UWS was close to that of water. The jet breakup length increases with momentum flux ratio since a jet having a higher momentum is able to penetrate a larger distance in the cross flow. Increasing the air temperature increases the velocity of the cross flow and hence reduces the breakup length. A correlation for jet breakup length was developed. The effect of inclusion of Weber number in the breakup length correlation, in addition to the momentum flux ratio, was studied. Visual observation shows that droplet sizes obtained from the plain orifice injector without preheating is large. Preheatingthe UWS before injection is recommended to reduce the droplet size.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4982

Author(s):  
Tushar Sikroria ◽  
Abhijit Kushari ◽  
Saadat Syed ◽  
Jeffery A. Lovett

This paper presents the results of an experimental investigation of liquid jet breakup in a cross flow of air under the influence of swirl (swirl numbers 0 and 0.2) at a fixed air flow Mach number 0.12 (typical gas turbine conditions). The experiments have been conducted for various liquid to air momentum flux ratios (q) in the range of 1 to 25. High speed (@ 500 fps) images of the jet breakup process are captured and those images are processed using matlab to obtain the variation of breakup length and penetration height with momentum flux ratio. Using the high speed images, an attempt has been made to understand the physics of the jet breakup process by identification of breakup modes—bag breakup, column breakup, shear breakup, and surface breakup. The results show unique breakup and penetration behavior which departs from the continuous correlations typically used. Furthermore, the images show a substantial spatial fluctuation of the emerging jet resulting in a wavy nature related to effects of instability waves. The results with 15 deg swirl show reduced breakup length and penetration related to the nonuniform distribution of velocity that offers enhanced fuel atomization in swirling fuel nozzles.


Author(s):  
Tushar Sikroria ◽  
Abhijit Kushari ◽  
Saadat Syed ◽  
Jeffery A. Lovett

This paper presents the results of an experimental investigation of liquid jet breakup in a cross-flow of air under the influence of swirl (swirl numbers 0 and 0.2) at a fixed air flow Mach No. 0.12 (typical gas turbine conditions). The experiments have been conducted for various liquid to air momentum flux ratios (q) in the range of 1 to 25. High speed (@ 500 fps) images of the jet breakup process are captured and those images are processed using MATLAB to obtain the variation of breakup length and penetration height with momentum flux ratio. Using the high speed images, an attempt has been made to understand the physics of the jet breakup process by identification of breakup modes — bag breakup, column breakup, shear breakup and surface breakup. The results show unique breakup and penetration behavior which departs from the continuous correlations typically used. Furthermore, the images show a substantial spatial fluctuation of the emerging jet resulting in a wavy nature related to effects of instability waves. The results with 15° swirl show reduced breakup length and penetration related to the non-uniform distribution of velocity that offers enhanced fuel atomization in swirling fuel nozzles.


Author(s):  
Venkat S. Iyengar ◽  
Sathiyamoorthy Kumarasamy ◽  
Srinivas Jangam ◽  
Manjunath Pulumathi

Cross flow fuel injection is a widely used approach for injecting liquid fuel in gas turbine combustors and afterburners due to the higher penetration and rapid mixing of fuel and the cross flowing airstream. Because of the very limited residence time available in these combustors it is essential to ensure that smaller drop sizes are generated within a short axial distance from the injector in order to promote effective mixing. This requirement calls for detailed investigations into spray characteristics of different injector configurations in a cross-flow environment for identifying promising configurations. The drop size characteristics of a liquid jet issuing from a forward angled injector into a cross-flow of air were investigated experimentally at conditions relevant to gas turbine afterburners. A rig was designed and fabricated to investigate the injection of liquid jet in subsonic cross-flow with a rectangular test section of cross section measuring 50 mm by 70 mm. Experiments were done with a 10 degree forward angled 0.8 mm diameter plain orifice nozzle which was flush mounted on the bottom plate of test section. Laser diffraction using Malvern Spraytec particle analyzer was used to measure drops size and distributions in the near field of the spray. Measurements were performed at a distance of 70 mm from the injector at various locations along the height of the spray plume for a reasonable range of liquid flow rates as in practical devices. The sprays were characterized using the non dimensional parameters such as the Weber number and the momentum flux ratio and drop sizes were measured at three locations along the height of the spray from the bottom wall. The momentum flux ratio was varied from 5 to 25. Results indicate that with increase in momentum flux ratio the SMD reduced at the specific locations and an higher overall SMD was observed as one goes from the bottom to the top of the spray plume. This was accompanied by a narrowing of the drop size distribution.


Author(s):  
Yongbin Ji ◽  
Bing Ge ◽  
Shusheng Zang

Jet-in-cross flow (JICF) has been investigated broadly because of its wide engineering application, for example in the gas turbine field, film cooling on the turbine vanes and blades, primary and dilution jets in the combustors and so on. In the gas turbine combustors, the main flow is generated by the swirlers to stabilize the flame, which induces complicated 3D flow characteristics. Different from uniform main flow, swirling cross flow has a strong tangential velocity component, which will deflect the jets in the circumferential direction as well as in the streamwise direction. So, the degradation behavior of the jets is more complex than that in the uniform cross flow. This paper presents PIV measurement of the flow field inside of a three-nozzle annular combustor with opposed quenching jets on the liner walls. Dry ice as a newly proposed flow tracer was proposed and tried. The momentum flux ratio and jet holes configuration are studied to evaluate their effects on the primary recirculation zone, downstream flow field. Finally, numerical simulation was also performed to reveal 3D flow characteristics as well as turbulent kinetic energy generation. The results show that momentum flux ratio has a dominant influence on flow characteristics in the combustor. Getting better understanding of jets behavior in the swirling cross flow helps optimization design of quenching or dilution holes geometry and arrangement for the gas turbine combustor, which turns to be very beneficial to the low-emission and high efficient combustor development.


2018 ◽  
Vol 10 (3) ◽  
pp. 211-230 ◽  
Author(s):  
Abhijeet Kumar ◽  
Srikrishna Sahu

The aim of this paper is to experimentally characterize the liquid jet breakup unsteadiness in a coaxial air-blast atomizer. The current research focuses on the measurement of the fluctuations of the jet breakup length and the flapping instability of the liquid jet, which contribute to the downstream fluctuations of the spray characteristics. The optical connectivity technique was used to measure the instantaneous breakup length of the water jet. Also, time resolved shadowgraph images of the primary jet breakup process were captured by high-speed imaging to characterize the jet instabilities at different axial locations from the atomizer exit. Experiments were performed for a wide range of air-to-liquid momentum flux ratio ( M) and aerodynamic Weber number ( Weg) corresponding to membrane- and/or fiber breakup mode of the jet disintegration process. The mean jet breakup length was found to vary inversely with M through a power law relation in agreement with the literature, while the breakup length fluctuations were found to first decrease and then increase with M. In order to capture the unsteady dynamics of the jet breakup process, the proper orthogonal decomposition analysis of the optical connectivity images was performed. The jet flapping and the fluctuations of the jet breakup length were identified as the second and the third spatial proper orthogonal decomposition modes, respectively, for all operating conditions of the atomizer. The amplitude and the frequency of the instabilities were measured by temporal tracking of the liquid–air interface on the shadowgraph images. The disturbance close to the injector exit corresponds to the Kelvin–Helmholtz instability, while close to the jet breakup point the jet exhibits the flapping instability, which is characterized by lateral oscillation of the jet about the atomizer axis. The influence of the liquid jet Reynolds number and momentum flux ratio on the KH and the flapping instabilities are examined.


Author(s):  
S. R. Gollahalli

This study was conducted to delineate the coupling effects of the elliptic geometry of the burner and a crossflow on the combustion of gas jets. This paper presents the flow and thermal structure of burner-wake stabilized turbulent propane jet flames from circular (diameter = 0.45 cm) and elliptic (major axis/minor axis = 3) burners of equivalent exit area in a crossflow of air. The elliptic burner was oriented with its major axis or minor axis aligned with the crossflow. Experiments were conducted in a wind tunnel provided with optical and probe access. Flame structure data including temperature profiles and concentration profiles of CO2, O2, CO, and NO were obtained in the single flame configuration (at jet to crossflow momentum flux ratio = 0.0067), where a planar recirculation zone exists completely stabilized in the wake of the burner tube. This study is complementary to our previous study with a two-zone structure flame at jet/crossflow momentum flux ratio of 0.11. Results show that in this flame configuration, the peak NO concentration in the circular burner is higher than that in the elliptic burner flames. Carbon monoxide concentration was approximately same in the flame with circular burner and the elliptic burner with its major axis aligned with cross-flow; the CO concentration in the elliptic flame with the minor axis of the burner aligned with cross-flow was slightly smaller.


Author(s):  
Amirreza Amighi ◽  
Nasser Ashgriz

An experimental study of liquid jet injection into subsonic air crossflow is presented. The aim of this study was to relate the jet trajectory to flow parameters, including jet and air velocities, pressure and temperature, as well as a set of nondimensional variables. For this purpose, an experimental setup was developed, which could withstand high temperatures and pressures. Images were captured using a laser-based shadowgraphy system. A total of 209 different conditions were tested and over 72,000 images were captured and processed. The crossflow air temperatures were 25 °C, 200 °C, and 300 °C; absolute crossflow air pressures were 2.1, 3.8, and 5.2 bars, and various liquid and gas velocities were tested for each given temperature and pressure. The results indicate that the trajectory and atomization change when the air and jet velocities are changed while keeping the momentum flux ratio constant. Therefore, it is beneficial to describe the trajectory based on air and jet Weber numbers or momentum flux ratio in combination with one of the Weber numbers. Also, examples are given where both Weber numbers are kept constant but the atomization is changed, and therefore, other terms beyond inertia terms are required to describe the spray behavior. It is also shown that the gas viscosity has to be considered when developing correlations. The correlations that include this term are generally better in predicting the trajectory. Therefore, Ohnesorge numbers in combination with the Weber numbers is used in the present correlations to describe the trajectories.


Author(s):  
Sachin Khosla ◽  
D. Scott Crocker

A numerical model for liquid jet atomization in a subsonic gas cross flow has been developed and incorporated into a CFD code. The model is designed primarily for the shear breakup regime, which is appropriate for many fuel injection applications. The model considers Weber number and momentum flux ratio ranges that are dominated by either jet surface breakup or column breakup. A boundary layer stripping model has been modified to account for both shearing from the column and shear primary breakup of large drops. Further secondary breakup was modeled with the Rayleigh-Taylor model. The effect of drop distortion on the drag is also considered. Results of the model have been compared with experimental data for jet-A liquid jets in air cross flows with varying pressure, air velocity, and liquid-to-gas momentum flux ratio. Comparisons were made for drop volume flux and drop size as a function of distance from the injector wall. Trends were captured for liquid penetration associated with varying momentum flux ratio, and for drop size as a function distance from the wall. In general, agreement between measurements and CFD predictions were quite good. Areas of disagreement could be reasonably explained by the model’s inherent inability to capture the wake flow behind the liquid column.


Author(s):  
Eugene Lubarsky ◽  
Jonathan R. Reichel ◽  
Ben T. Zinn ◽  
Rob McAmis

This paper describes an experimental investigation of the spray created by Jet A fuel injection from a plate containing sharp edged orifice 0.018 inches (457 μm) in diameter and L/D ratio of 10 into the crossflow of preheated air (555 K) at elevated pressure in the test section (4 ata) and liquid to air momentum-flux ratio of 40. A 2 component Phase Doppler Particle Analyzer used for measuring the characteristics of the spray. The Weber number of the spray in crossflow was varied between 33 and 2020 and the effect of Weber number on spray properties was investigated. It was seen that shear breakup mechanism dominates at Weber number greater than about 100. Droplets’ diameters were found to be in the range of 15-30 microns for higher values of Weber numbers, while larger droplets (100-200 microns) were observed at Weber number of 33. Larger droplets were observed at the periphery of the spray. The droplet velocities and diameters were measured in a plane 30mm downstream of the orifice along the centerline of the spray at an incoming air flow Mach number of 0.2 and liquid to air momentum-flux ratio of 40. The droplets reach a maximum of 90% of the flow velocity at this location. The velocity of droplets in the directions perpendicular to the air flow direction is higher at the periphery of the spray possibly due to the presence of larger droplets. The RMS values of the droplet velocities are highest slightly off center of the centerline of the spray showing the presence of strong vortices formed due to the liquid jet in crossflow. The data presented here could serve as benchmark data for CFD code validation.


Author(s):  
Carson D. Slabaugh ◽  
Lucky V. Tran ◽  
J. S. Kapat ◽  
Bobby A. Warren

This work is an investigation of the heat transfer and pressure-loss characteristics in a rectangular channel with ribs oriented perpendicular to the flow. The novelty of this study lies in the immoderate parameters of the channel geometry and transport enhancing features. Specifically, the aspect ratio (AR) of the rectangular channel is considerably high, varying from fifteen to thirty for the cases reported. Also varied is the rib-pitch to rib-height (p/e), studied at two values; 18.8 and 37.3. Rib-pitch to rib-width (p/w) is held to a value of two for all configurations. Channel Reynolds number is varied between approximately 3,000 and 27,000 for four different tests of each channel configuration. Each channel configuration is studied with two different inlet conditions. The baseline condition consists of a long entrance section leading to the entrance of the channel to provide a hydrodynamically-developed flow at the inlet. The second inlet condition studied consists of a cross-flow supply in a direction perpendicular to the channel axis, oriented in the direction of the channel width (the longer channel dimension). In the second case, the flow rate of the cross-flow supply is varied to understand the effects of a varying momentum flux ratio on the heat transfer and pressure-loss characteristics of the channel. Numerical simulations revealed a strong dependence of the local flow physics on the momentum flux ratio. The turning effect of the flow entering the channel from the cross-flow channel is strongly affected by the pressure gradient across the channel. Strong pressure fields have the ability to propagate farther into the cross-flow channel to ‘pull’ the flow, partially redirecting it before entering the channel and reducing the impingement effect of the flow on the back wall of the channel. Experimental result shows a maximum value of Nusselt number augmentation to be found in the 30:1 AR channel with the aggressive augmenter (p/e = 37.3) and a high momentum flux ratio: Nu/Nuo = 3.15. This design also yielded the friction with f/f0 = 2.6.


Sign in / Sign up

Export Citation Format

Share Document