scholarly journals A Novel Cystic Fibrosis Gene Mutation C.4242+1G>C in an Omani Patient: A Case Report

2021 ◽  
Vol 36 (2) ◽  
pp. e243-e243
Author(s):  
Said Al Balushi ◽  
Younis Al Balushi ◽  
Moza Al Busaidi ◽  
Latifa Al Mutawa

Cystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that affects multisystems in the body, particularly the lungs and digestive system. We report a case of an Omani newborn who presented with meconium ileus and high suspicion of CF. Thus, full CFTR gene sequencing was performed, which revealed a homozygous unreported C.4242+1G>C novel gene mutation. Both parents were found to be heterozygous for this mutation. This case sheds light on the importance of the extensive genetic testing of typical CF cases in the absence of family history or during neonatal presentations, especially when the sweat test cannot be performed and the diagnosis can be challenging.

2013 ◽  
Vol 39 (2) ◽  
pp. 181-189 ◽  
Author(s):  
Vinícius Buaes Dal'Maso ◽  
Lucas Mallmann ◽  
Marina Siebert ◽  
Laura Simon ◽  
Maria Luiza Saraiva-Pereira ◽  
...  

OBJECTIVE: To evaluate the diagnostic contribution of molecular analysis of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in patients suspected of having mild or atypical cystic fibrosis (CF). METHODS: This was a cross-sectional study involving adolescents and adults aged ≥ 14 years. Volunteers underwent clinical, laboratory, and radiological evaluation, as well as spirometry, sputum microbiology, liver ultrasound, sweat tests, and molecular analysis of the CFTR gene. We then divided the patients into three groups by the number of mutations identified (none, one, and two or more) and compared those groups in terms of their characteristics. RESULTS: We evaluated 37 patients with phenotypic findings of CF, with or without sweat test confirmation. The mean age of the patients was 32.5 ± 13.6 years, and females predominated (75.7%). The molecular analysis contributed to the definitive diagnosis of CF in 3 patients (8.1%), all of whom had at least two mutations. There were 7 patients (18.9%) with only one mutation and 26 patients (70.3%) with no mutations. None of the clinical characteristics evaluated was found to be associated with the genetic diagnosis. The most common mutation was p.F508del, which was found in 5 patients. The combination of p.V232D and p.F508del was found in 2 patients. Other mutations identified were p.A559T, p.D1152H, p.T1057A, p.I148T, p.V754M, p.P1290P, p.R1066H, and p.T351S. CONCLUSIONS: The molecular analysis of the CFTR gene coding region showed a limited contribution to the diagnostic investigation of patients suspected of having mild or atypical CF. In addition, there were no associations between the clinical characteristics and the genetic diagnosis.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 117
Author(s):  
Anna Tamanini ◽  
Enrica Fabbri ◽  
Tiziana Jakova ◽  
Jessica Gasparello ◽  
Alex Manicardi ◽  
...  

(1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be up-regulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-335-5p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine.


2017 ◽  
Vol 25 (3) ◽  
pp. 119-125 ◽  
Author(s):  
Isabel Ibarra-González ◽  
Felix-Julián Campos-Garcia ◽  
Luz del Alba Herrera-Pérez ◽  
Patricia Martínez-Cruz ◽  
Claudia-Margarita Moreno-Graciano ◽  
...  

Objective To use the results of the first five years of a cystic fibrosis newborn screening program to estimate the cystic fibrosis birth prevalence and spectrum of cystic fibrosis transmembrane conductance regulator ( CFTR) gene variants in Yucatan, Mexico. Methods Screening was performed from 2010 to 2015, using two-tier immunoreactive trypsinogen testing, followed by a sweat test. When sweat test values were >30 mmol/L, the CFTR gene was analyzed. Results Of 96,071 newborns screened, a second sample was requested in 119 cases. A sweat test was performed in 30 newborns, and 9 possible cases were detected (seven confirmed cystic fibrosis and two inconclusive). The most frequently detected CFTR pathogenic variant (5/14 cystic fibrosis alleles, 35.7%) was p.(Phe508del); novel p.(Ala559Pro) and p.(Thr1299Hisfs*29) pathogenic variants were found. Conclusions Cystic fibrosis birth prevalence in southeastern Mexico is 1:13,724 newborns. Immunoreactive trypsinogen blood concentration is influenced by gestational age and by the time of sampling. The spectrum of CFTR gene variants in Yucatan is heterogeneous.


Sign in / Sign up

Export Citation Format

Share Document