scholarly journals Multicenter Characterization and Validation of the Intron-8 Poly(T) Tract (IVS8-T) Status in 25 Coriell Cell Repository Cystic Fibrosis Reference Cell Lines for Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene Mutation Assays

2004 ◽  
Vol 50 (1) ◽  
pp. 251-254 ◽  
Author(s):  
Siby Sebastian ◽  
Silvia G Spitzer ◽  
Leonard E Grosso ◽  
Jean Amos ◽  
Frederick V Schaefer ◽  
...  
2021 ◽  
Vol 36 (2) ◽  
pp. e243-e243
Author(s):  
Said Al Balushi ◽  
Younis Al Balushi ◽  
Moza Al Busaidi ◽  
Latifa Al Mutawa

Cystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that affects multisystems in the body, particularly the lungs and digestive system. We report a case of an Omani newborn who presented with meconium ileus and high suspicion of CF. Thus, full CFTR gene sequencing was performed, which revealed a homozygous unreported C.4242+1G>C novel gene mutation. Both parents were found to be heterozygous for this mutation. This case sheds light on the importance of the extensive genetic testing of typical CF cases in the absence of family history or during neonatal presentations, especially when the sweat test cannot be performed and the diagnosis can be challenging.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 117
Author(s):  
Anna Tamanini ◽  
Enrica Fabbri ◽  
Tiziana Jakova ◽  
Jessica Gasparello ◽  
Alex Manicardi ◽  
...  

(1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be up-regulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-335-5p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine.


2005 ◽  
Vol 73 (10) ◽  
pp. 6822-6830 ◽  
Author(s):  
Nina Reiniger ◽  
Jeffrey K. Ichikawa ◽  
Gerald B. Pier

ABSTRACT Chronic lung infection by Pseudomonas aeruginosa causes significant morbidity in cystic fibrosis patients initiated by the failure of innate immune responses. We used microarray analysis and real-time PCR to detect transcriptional changes associated with cytokine production in isogenic bronchial epithelial cell lines with either wild-type (WT) or mutant cystic fibrosis transmembrane conductance regulator (CFTR) in response to P. aeruginosa infection. The transcription of four NF-κB-regulated cytokine genes was maximal in the presence of WT CFTR: the interleukin-8 (IL-8), IL-6, CXCL1, and intracellular adhesion molecule 1 (ICAM-1) genes. Analysis of protein expression in two cell lines paired for wild-type and mutant CFTR with three P. aeruginosa strains showed IL-6 and IL-8 expressions were consistently enhanced by the presence of WT CFTR in both cell lines with all three strains of P. aeruginosa, although some strains gave small IL-8 increases in cells with mutant CFTR. CXCL1 production showed consistent enhancement in cells with WT CFTR using all three bacterial strains in one cell line, whereas in the other cell line, CXCL1 showed a significant increase in cells with either WT or mutant CFTR. ICAM-1 was unchanged at the protein level in one of the cell lines but did show mild enhancement with WT CFTR in the other cell pair. Inhibitions of NF-κB prior to infection indicated differing degrees of dependence on NF-κB for production of the cytokines, contingent on the cell line. Cytokine effectors of innate immunity to P. aeruginosa were found to be positively influenced by the presence of WT CFTR, indicating a role in resistance to P. aeruginosa infection.


Sign in / Sign up

Export Citation Format

Share Document