Post-treatment of dairy wastewater by activated sludge-ultrafiltration for water reuse

2018 ◽  
Vol 115 ◽  
pp. 24-32
Author(s):  
Temesgen Sibhatu Habtu ◽  
Magdalena Zielinska
1991 ◽  
Vol 23 (7-9) ◽  
pp. 1503-1507 ◽  
Author(s):  
L. M. Triet ◽  
N. T. Viet ◽  
T. V. Thinh ◽  
H. D. Cuong ◽  
J. C. L. van Buuren

The effluent from activated sludge treatment of petroleum wastewater was treated with the aid of a ponding system using aquatic plants (Water Hyacinth, Chlorella, Reed). A good result was obtained in this study. Pilot pond system shows that the purification efficiency depends on the residence time of about 14 days. The petroleum removal waa 97-98 %, the COD removal was from 88-93 %. The dissolved oxygen amount (with Chlorella) increased from 0.7 mg/l to 9.8 mg/l and the pH increased from 6.9 to 8-8.6. The application of 3 step biological pond with the use of Water Hyacinth, Chlorella, Reeds for post treatment of petroleum wastewater is appropriate in Vietnam.


2000 ◽  
Vol 41 (1) ◽  
pp. 223-230 ◽  
Author(s):  
M.F. Sevimli ◽  
A.F. Aydin ◽  
Ì. Öztürk ◽  
H.Z. Sarikaya

The aim of this study is to characterize the wastewater from an opium alkaloid processing plant and to evaluate alternative treatment techniques to upgrade an existing full-scale biological activated sludge treatment plant having problems of high residual COD and unacceptable dark brown color. In this content firstly, long term operational records of the two stage aerobic activated sludge treatment plant of the opium alkaloid factory located in Afyon province of Turkiye were evaluated. The operating results for the last three years were statistically analyzed and median and 95-percentile values were determined for the parameters including chemical and biological oxygen demand (COD and BOD5) and treatment efficiencies. Specific wastewater generation was found as 6.7 m3 per ton of the opium capsule processed. In the following stage of the study, three additional treatment processes were experimentally tested: anaerobic pretreatment, post treatment of aerobically treated effluents with lime and ozone. Pilot scale upflow anaerobic sludge blanket reactor (UASBR) experiments have demonstrated that about 70 percent of the incoming COD can be removed anaerobically. Chemical treatability studies with lime for the aerobically treated effluent have shown that about 78 percent color and 46 percent COD removals can be obtained with lime dosage of 25 gl−1. Post treatment of the effluents of the existing two stage aerobic treatment with ozone also resulted in significant color and COD reduction.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 529-538 ◽  
Author(s):  
Gary L. Amy ◽  
Curtis W. Bryant ◽  
Mosen Belyani

Differences in the nature of soluble organic matter were measured for various full-scale wastewater treatment processes. Conventional activated sludge, pure oxygen activated sludge, biofiltration, granular activated carbon, and tertiary sand filtration were evaluated. Effluent soluble organic matter was analyzed by ultrafiltration for the apparent molecular weight distribution of soluble organic carbon and UV-absorbing material. The effects of annual season, secondary treatment process, and tertiary treatment process upon the properties of the effluent soluble organic matter were statistically significant at the 99% level. Effluent properties from the various treatments were sufficiently different to support the concept of the selection of appropriate treatments to minimize the effluent concentration of specific fractions of the soluble organic material as required for specific water reuse applications.


1997 ◽  
Vol 35 (10) ◽  
pp. 121-128 ◽  
Author(s):  
Grietje Zeeman ◽  
Wendy T. M. Sanders ◽  
Kaijun Y. Wang ◽  
Gatze Lettinga

The application of one phase anaerobic wastewater systems for the treatment of complex wastewaters containing high amounts of suspended solids or lipids is usually limited by accumulation of these compounds in the sludge bed. This accumulation reduces the solid retention time and methanogenic activity of the sludge. The aim of the presented research was to achieve removal of suspended solids or lipids in an Upflow Anaerobic Solids Removal reactor to make higher reactor loadings possible. Raw sewage, waste activated sludge and dairy wastewater were pre-treated in an UASR reactor. When treating the raw sewage at 17°C and 3.0 h HRT 65% of the suspended COD could be entrapped in the sludge bed. Treatment of 2 g COD/l waste activated sludge at 9.6h HRT and 20°C resulted in 98% removal of the suspended COD. In both cases only 6–7% acidification of the complex wastewater took place. Dairy wastewater consists of mainly dissolved and colloidal COD. The lipids are surrounded by a protein membrane. These proteins will precipitate at pH <4.6 resulting in co-precipitation of the lipids. At 20°C and 4.5h HRT 57% of the lactose present in the wastewater was acidified, resulting in a pH of 4.0 and 98% lipids removal. It was concluded that the UASR reactor can achieve very high removal efficiencies for CODss and lipids, yet the retained COD is just partly hydrolysed. The produced sludge can be post-digested at thermophilic or mesophilic conditions to produce methane gas.


2018 ◽  
Vol 85 (3) ◽  
pp. 391-395 ◽  
Author(s):  
Kelly Fitzhenry ◽  
Neil Rowan ◽  
William Finnegan ◽  
Xinmin Zhan ◽  
Eoghan Clifford

In this Research Communication we investigate the microbiological profile of 12 dairy wastewater streams from three contrasting Irish dairy processing factories to determine whether faecal indicators/pathogens were present and in turn, whether disinfection may be required for potential water reuse within the factory. Subsequently, the impact of suspended solids on the inactivation efficiency of Escherichia coli via two means of ultravoilet (UV) disinfection; flow-through pulsed UV (PUV) and continuous low pressure UV (LPUV) disinfection was analysed. Faecal indicators total coliforms and E. coli were detected in 10 out of the 12 samples collected at the dairy processing factories while pathogenic bacteria Listeria monocytogenes was detected in all samples collected at 2 out of the 3 factories. Salmonella spp. was undetected in all samples. The results also indicated that organic dairy wastewater solids had an impact on the performance efficiency of the PUV system and, to a lesser extent, the LPUV system. The findings indicate that the targeting of key pathogens would be required to enable wastewater reuse (and indeed effluent discharges if regulation continues to become more stringent) and that LPUV may offer a more robust disinfection method as it appears to be less susceptible to the presence of suspended solids.


2017 ◽  
Vol 140 ◽  
pp. 1247-1254 ◽  
Author(s):  
Patrícia Bilotta ◽  
Ricardo Luiz Radis Steinmetz ◽  
Airton Kunz ◽  
Rubia Mores

Sign in / Sign up

Export Citation Format

Share Document