Configurations of reverse osmosis with variable energy consumption for off-grid wind-powered seawater desalination: system modelling and water cost

2020 ◽  
Vol 180 ◽  
pp. 1-15
Author(s):  
Vicente J. Subiela ◽  
Baltasar Peñate ◽  
Lourdes García-Rodríguez
Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 781
Author(s):  
Federico Leon ◽  
Alejandro Ramos ◽  
S. Ovidio Perez-Baez

This article shows the optimization of the reverse osmosis process in seawater desalination plants, taking the example of the Canary Islands, where there are more than 320 units of different sizes, both private and public. The objective is to improve the energy efficiency of the system in order to save on operation costs as well as reduce the carbon and ecological footprints. Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system. Accounting for the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve the energy efficiency. The energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the seawater desalination plant, as it is shown in this study.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 463 ◽  
Author(s):  
Xuexiu Jia ◽  
Jiří Klemeš ◽  
Petar Varbanov ◽  
Sharifah Wan Alwi

Seawater desalination is considered a technique with high water supply potential and has become an emerging alternative for freshwater supply in China. The increase of the capacity also increases energy consumption and greenhouse gases (GHG) emissions, which has not been well investigated in studies. This study has analyzed the current development of seawater desalination in China, including the capacity, distribution, processes, as well as the desalted water use. Energy consumption and GHG emissions of overall desalination in China, as well as for the provinces, are calculated covering the period of 2006–2016. The unit product cost of seawater desalination plants specifying processes is also estimated. The results showed that 1) The installed capacity maintained increased from 2006 to 2016, and reverse osmosis is the major process used for seawater desalination in China. 2) The energy consumption increased from 81 MWh/y to 1,561 MWh/y during the 11 years. The overall GHG emission increase from 85 Mt CO2eq/y to 1,628 Mt CO2eq/y. Tianjin had the largest GHG emissions, following are Hebei and Shandong, with emissions of 4.1 Mt CO2eq/y, 2.2 Mt CO2eq/y. and 1.0 Mt CO2eq/y. 3) The unit product cost of seawater desalination is higher than other water supply alternatives, and it differentiates the desalination processes. The average unit product cost of the reverse osmosis process is 0.96 USD and 2.5 USD for the multiple-effect distillation process. The potential for future works should specify different energy forms, e.g. heat and power. Alternatives of process integration should be investigated—e.g. efficiency of using the energy, heat integration, and renewables in water desalination, as well as the utilization of total site heat integration.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 57-66 ◽  
Author(s):  
D. Wirth ◽  
C. Cabassud

This work addresses the potentialities of vacuum membrane distillation (VMD) using hollow fibre membranes for seawater desalination. Experiments were carried out with a synthetic salty water containing a concentration of NaCl from 0 up to 300 g/L. A Microza (Pall) hollow fibre module was used. Experimental results show that, for this module, concentration polarisation and heat transfer limitations are not significant and do not modify the permeate flux. This is a great advantage over reverse osmosis (RO). Energy consumption was then studied using computations based on modelling. Two different industrial plants were considered: the first one consisted of hollow fibre modules arranged in series and operated in a single-pass. The second one was designed for a discontinuous operation using a circulation loop. Computations clearly show the interest (low energy consumption) of VMD for seawater desalination in comparison with RO.


Author(s):  
Alexander Fayer

This document discusses operation of desalination system permanently extracting water from hydrogel draw agent by specially selected wicks. Due to its peculiarity the system combines advantages of both forward and reverse osmosis approaches such as, low power consumption, passive process of a freshwater extraction, continuous duty cycle and scaling possibility. While in modern systems an energy consumption of seawater desalination reaches of about 3 kWh/m 3, including pre-filtering and ancillaries [1], the same parameter for the specific system expected to be as low as for local fresh water supplyi.e., 0.2 kWh/m 3


2016 ◽  
Vol 30 (4) ◽  
pp. 459-469 ◽  
Author(s):  
Hyunwook Ryu ◽  
◽  
Minseok Kim ◽  
Jun-Heok Lim ◽  
Joung Ha Kim ◽  
...  

2006 ◽  
Vol 6 (4) ◽  
pp. 163-169
Author(s):  
S.H. Kim ◽  
J.S. Yoon ◽  
C.H. Yoon

This study was undertaken to evaluate the suitability of microfiltration (MF) as pre-treatment for reverse osmosis (RO) seawater desalination to treat the seawater suffering from red-tide contamination using long-term operation of pilot plant. The one and a half year pilot MF operation had two objectives: stable production of the flow rate of 5 m3/h and acceptable water quality (SDI less than 3). The pilot plant operation revealed that the MF system successfully produced the target flow rate despite red-tide contamination of the seawater. The average flow rate of 5.2 m3/h was obtained at the average operating pressure of 0.53 bar. However, the MF system failed to achieve the target flow rate at red-tide bloom. When red-tide bloom occurred the chlorophyll-a concentration became 136 mg/m3, the flow rate decreased to half of the target, and energy consumption became extremely high. Subsequently, the operation was stopped. According to the relationship between the flow rate of the MF system and chlorophyll-a concentration developed in this study, it would be desirable to stop the MF operation at chlorophyll-a concentration of 57 mg/m3. The MF system produced acceptable quality water for RO feeding. The SDI of the MF treated was consistently less than 3. The MF system consumed 0.5 KWh of energy to produce 1 m3/h of MF treated, if the data during the red-tide bloom were excluded. Extra equipment (intake pump, control system, monitoring system, air conditioner) caused higher energy consumption than expected.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2275
Author(s):  
Zhuo Wang ◽  
Yanjie Zhang ◽  
Tao Wang ◽  
Bo Zhang ◽  
Hongwen Ma

The reverse osmosis method has developed extremely rapidly in recent years and has become the most competitive seawater desalination technology in the world, and it has been widely used in all aspects. Large-scale reverse osmosis desalination plants cannot provide fresh water resources in areas with insufficient water resources and limited space. Therefore, this paper proposes a research plan for a small seawater desalination device based on reverse osmosis, which is mainly suitable for handling emergencies, disaster relief, desert areas and outdoor activities and other needs for timely freshwater resources. It mainly includes pretreatment modules, a reaction infiltration module, a post-processing module and an energy supply module. Detailed design calculations are carried out for the small-scale reverse osmosis membrane system, including the selection and quantity and arrangement of membranes. Subsequently, the one-stage two-stage small-scale reverse osmosis membrane system was modeled, and its energy consumption was analyzed theoretically from the perspectives of specific energy consumption and energy utilization efficiency; the main influencing factors were clarified, and the optimal recovery rate for system operation was determined to be 20%–30%. Finally, an experimental prototype was built to conduct relevant experiments to determine the influence trend of pressure, temperature, concentration, and flow rate on the operating performance of the reverse osmosis system.


Sign in / Sign up

Export Citation Format

Share Document